The problem of optimal control of a Chaplygin ball by internal rotors

被引:12
|
作者
Bolotin, Sergey [1 ,2 ]
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
[2] Russian Acad Sci, VA Steklov Math Inst, Moscow 119991, Russia
来源
REGULAR & CHAOTIC DYNAMICS | 2012年 / 17卷 / 06期
关键词
nonholonomic constraint; vaconomic mechanics; optimal control; maximum principle; Hamiltonian; NONINTEGRABLE CONSTRAINTS; SYSTEMS; SPHERE;
D O I
10.1134/S156035471206007X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem of optimal control of a Chaplygin ball on a plane by means of 3 internal rotors. Using Pontryagin maximum principle, the equations of extremals are reduced to Hamiltonian equations in group variables. For a spherically symmetric ball, the solutions can be expressed in by elliptic functions.
引用
收藏
页码:559 / 570
页数:12
相关论文
共 50 条
  • [31] Dynamics of the Chaplygin ball on a rotating plane
    Bizyaev, I. A.
    Borisov, A. V.
    Mamaev, I. S.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2018, 25 (04) : 423 - 433
  • [32] On the Lie integrability theorem for the Chaplygin ball
    Tsiganov, Andrey V.
    REGULAR & CHAOTIC DYNAMICS, 2014, 19 (02): : 185 - 197
  • [33] On the Lie integrability theorem for the Chaplygin ball
    Andrey V. Tsiganov
    Regular and Chaotic Dynamics, 2014, 19 : 185 - 197
  • [34] Optimal Control of a Ball Pitching Robot
    Yedeg, Esubalewe Lakie
    Wadbro, Eddie
    2012 17TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2012, : 456 - 456
  • [35] Comments on the paper by A. V. Borisov, A. A. Kilin, I. S. Mamaev "How to control the Chaplygin ball using rotors. II"
    Ivanova, Tatiana B.
    Pivovarova, Elena N.
    REGULAR & CHAOTIC DYNAMICS, 2014, 19 (01): : 140 - 143
  • [36] Comments on the paper by A. V. Borisov, A. A. Kilin, I. S. Mamaev “How to control the Chaplygin ball using rotors. II”
    Tatiana B. Ivanova
    Elena N. Pivovarova
    Regular and Chaotic Dynamics, 2014, 19 : 140 - 143
  • [37] Routh symmetry in the Chaplygin’s rolling ball
    Byungsoo Kim
    Regular and Chaotic Dynamics, 2011, 16 : 663 - 670
  • [38] Routh Symmetry in the Chaplygin's Rolling Ball
    Kim, Byungsoo
    REGULAR & CHAOTIC DYNAMICS, 2011, 16 (06): : 663 - 670
  • [39] On final motions of a Chaplygin ball on a rough plane
    Alexander P. Ivanov
    Regular and Chaotic Dynamics, 2016, 21 : 804 - 810
  • [40] On Final Motions of a Chaplygin Ball on a Rough Plane
    Ivanov, Alexander P.
    REGULAR & CHAOTIC DYNAMICS, 2016, 21 (7-8): : 804 - 810