Sharp bounds for the signless Laplacian spectral radius in terms of clique number

被引:40
|
作者
He, Bian [1 ]
Jin, Ya-Lei [1 ]
Zhang, Xiao-Dong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Signless Laplacian spectral radius; Clique number; Turan graph; GRAPHS; EIGENVALUES; THEOREM;
D O I
10.1016/j.laa.2011.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a sharp upper and lower bounds for the signless Laplacian spectral radius of graphs in terms of clique number. Moreover, the extremal graphs which attain the upper and lower bounds are characterized. In addition, these results disprove the two conjectures on the signless Laplacian spectral radius in [8]. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3851 / 3861
页数:11
相关论文
共 50 条
  • [31] Upper Bounds on the (Signless Laplacian) Spectral Radius of Irregular Weighted Graphs
    Xie, Shuiqun
    Chen, Xiaodan
    Li, Xiuyu
    Liu, Xiaoqian
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (04) : 2063 - 2080
  • [32] Sufficient conditions for Hamiltonian graphs in terms of (signless Laplacian) spectral radius
    Chen, Xiaodan
    Hou, Yaoping
    Qian, Jianguo
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (05): : 919 - 936
  • [33] On Distance Signless Laplacian Spectral Radius and Distance Signless Laplacian Energy
    Medina, Luis
    Nina, Hans
    Trigo, Macarena
    MATHEMATICS, 2020, 8 (05)
  • [34] Signless Laplacian spectral radius and Hamiltonicity
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (2-3) : 566 - 570
  • [35] Sharp Bounds on the Signless Laplacian Spread of Graphs
    Li, Dong
    Liu, Huiqing
    Zhang, Shunzhe
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (04) : 1011 - 1020
  • [36] On the Signless Laplacian Spectral Radius of Cacti
    Chen, Mingzhu
    Zhou, Bo
    CROATICA CHEMICA ACTA, 2016, 89 (04) : 493 - 498
  • [37] Sharp Bounds on the Signless Laplacian Spread of Graphs
    Dong Li
    Huiqing Liu
    Shunzhe Zhang
    Bulletin of the Iranian Mathematical Society, 2019, 45 : 1011 - 1020
  • [38] On the signless Laplacian spectral radius of digraphs
    Bozkurt, S. Burcu
    Bozkurt, Durmus
    ARS COMBINATORIA, 2013, 108 : 193 - 200
  • [39] The smallest Laplacian spectral radius of graphs with a given clique number
    Guo, Ji-Ming
    Li, Jianxi
    Shiu, Wai Chee
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (04) : 1109 - 1122
  • [40] On the maximal signless Laplacian spectral radius of graphs with given matching number
    Yu, Guihai
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2008, 84 (09) : 163 - 166