Stan: A Probabilistic Programming Language for Bayesian Inference and Optimization

被引:344
|
作者
Gelman, Andrew [1 ]
Lee, Daniel [2 ]
Guo, Jiqiang [2 ]
机构
[1] Columbia Univ, Stat & Polit Sci, New York, NY 10027 USA
[2] Columbia Univ, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Bayesian inference; hierarchical models; probabilistic programming; statistical computing;
D O I
10.3102/1076998615606113
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users' and developers' perspectives and illustrate with a simple but nontrivial nonlinear regression example.
引用
收藏
页码:530 / 543
页数:14
相关论文
共 50 条
  • [1] Stan: A Probabilistic Programming Language
    Carpenter, Bob
    Gelman, Andrew
    Hoffman, Matthew D.
    Lee, Daniel
    Goodrich, Ben
    Betancourt, Michael
    Brubaker, Marcus A.
    Guo, Jiqiang
    Li, Peter
    Riddell, Allen
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (01): : 1 - 29
  • [2] Probabilistic robotic logic programming with hybrid Boolean and Bayesian inference
    Post, Mark A.
    [J]. ROBOTICA, 2024, 42 (01) : 40 - 71
  • [3] Evaluating probabilistic programming and fast variational Bayesian inference in phylogenetics
    Fourment, Mathieu
    Darling, Aaron E.
    [J]. PEERJ, 2019, 7
  • [4] Time-efficient Bayesian Inference for a (Skewed) Von Mises Distribution on the Torus in a Deep Probabilistic Programming Language
    Ronning, Ola
    Ley, Christophe
    Mardia, Kanti, V
    Hamelryck, Thomas
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2021,
  • [5] POPPER, a simple programming language for probabilistic semantic inference in medicine
    Robson, Barry
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 56 : 107 - 123
  • [6] Static Posterior Inference of Bayesian Probabilistic Programming via Polynomial Solving
    Wang, Peixin
    Yang, Tengshun
    Fu, Hongfei
    Li, Guanyan
    Ong, C. -H. Luke
    [J]. PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2024, 8 (PLDI):
  • [7] A Hybrid Optimization Algorithm with Bayesian Inference for Probabilistic Model Updating
    Sun, Hao
    Betti, Raimondo
    [J]. COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2015, 30 (08) : 602 - 619
  • [8] Bayesian inference with Stan: A tutorial on adding custom distributions
    Annis, Jeffrey
    Miller, Brent J.
    Palmeri, Thomas J.
    [J]. BEHAVIOR RESEARCH METHODS, 2017, 49 (03) : 863 - 886
  • [9] Bayesian inference with Stan: A tutorial on adding custom distributions
    Jeffrey Annis
    Brent J. Miller
    Thomas J. Palmeri
    [J]. Behavior Research Methods, 2017, 49 : 863 - 886
  • [10] Compiling Stan to Generative Probabilistic Languages and Extension to Deep Probabilistic Programming
    Baudart, Guillaume
    Burroni, Javier
    Hirzel, Martin
    Mandel, Louis
    Shinnar, Avraham
    [J]. PROCEEDINGS OF THE 42ND ACM SIGPLAN INTERNATIONAL CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION (PLDI '21), 2021, : 497 - 510