Including screening in van der Waals corrected density functional theory calculations: The case of atoms and small molecules physisorbed on graphene

被引:63
|
作者
Silvestrelli, Pier Luigi [1 ]
Ambrosetti, Alberto
机构
[1] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy
来源
JOURNAL OF CHEMICAL PHYSICS | 2014年 / 140卷 / 12期
关键词
GENERALIZED GRADIENT APPROXIMATION; BASIS-SET LIMIT; AB-INITIO; NONCOVALENT INTERACTIONS; CARBON-MONOXIDE; LONG-RANGE; BENZENE; HYDROGEN; 1ST; ADSORPTION;
D O I
10.1063/1.4869330
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Density Functional Theory (DFT)/van der Waals-Quantum Harmonic Oscillator-Wannier function (vdW-QHO-WF) method, recently developed to include the vdW interactions in approximated DFT by combining the quantum harmonic oscillator model with the maximally localized Wannier function technique, is applied to the cases of atoms and small molecules (X=Ar, CO, H-2, H2O) weakly interacting with benzene and with the ideal planar graphene surface. Comparison is also presented with the results obtained by other DFT vdW-corrected schemes, including PBE+ D, vdW-DF, vdW-DF2, rVV10, and by the simpler Local Density Approximation (LDA) and semilocal generalized gradient approximation approaches. While for the X-benzene systems all the considered vdW-corrected schemes perform reasonably well, it turns out that an accurate description of the X-graphene interaction requires a proper treatment of many-body contributions and of short-range screening effects, as demonstrated by adopting an improved version of the DFT/vdW-QHO-WF method. We also comment on the widespread attitude of relying on LDA to get a rough description of weakly interacting systems. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Graphene-supported small transition-metal clusters: A density functional theory investigation within van der Waals corrections
    Rego, Celso R. C.
    Tereshchuk, Polina
    Oliveira, Luiz N.
    Da Silva, Juarez L. F.
    PHYSICAL REVIEW B, 2017, 95 (23)
  • [42] Energy ranking of molecular crystals using density functional theory calculations and an empirical van der Waals correction
    Neumann, MA
    Perrin, MA
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (32): : 15531 - 15541
  • [43] Adsorption and oxidation of SO2 by graphene oxides: A van der Waals density functional theory study
    Zhang, Huijuan
    Cen, Wanglai
    Liu, Jie
    Guo, Jiaxiu
    Yin, Huaqiang
    Ning, Ping
    APPLIED SURFACE SCIENCE, 2015, 324 : 61 - 67
  • [44] Toward the description of van der Waals interactions within density functional theory
    Lein, M
    Dobson, JF
    Gross, EKU
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 1999, 20 (01) : 12 - 22
  • [45] Long-range van der Waals interactions in density functional theory
    Alonso, J. A.
    Mananes, A.
    THEORETICAL CHEMISTRY ACCOUNTS, 2007, 117 (04) : 467 - 472
  • [46] Van der Waals forces in the local-orbital density functional theory
    Basanta, MA
    Dappe, YJ
    Ortega, J
    Flores, F
    EUROPHYSICS LETTERS, 2005, 70 (03): : 355 - 361
  • [47] Long-Range van der Waals Interactions in Density Functional Theory
    J. A. Alonso
    A. Mañanes
    Theoretical Chemistry Accounts, 2007, 117 : 467 - 472
  • [48] van der Waals Interactions in Density-Functional Theory: Intermolecular Complexes
    Kannemann, Felix O.
    Becke, Axel D.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (04) : 1081 - 1088
  • [49] A density functional theory study of van der Waals interaction in carbon nanotubes
    Wang, Houng-Wei
    Hayashi, Michitoshi
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2023, 70 (03) : 759 - 769
  • [50] van der Waals Interactions in Density Functional Theory Using Wannier Functions
    Silvestrelli, Pier Luigi
    JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (17): : 5224 - 5234