Including screening in van der Waals corrected density functional theory calculations: The case of atoms and small molecules physisorbed on graphene

被引:63
|
作者
Silvestrelli, Pier Luigi [1 ]
Ambrosetti, Alberto
机构
[1] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy
来源
JOURNAL OF CHEMICAL PHYSICS | 2014年 / 140卷 / 12期
关键词
GENERALIZED GRADIENT APPROXIMATION; BASIS-SET LIMIT; AB-INITIO; NONCOVALENT INTERACTIONS; CARBON-MONOXIDE; LONG-RANGE; BENZENE; HYDROGEN; 1ST; ADSORPTION;
D O I
10.1063/1.4869330
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Density Functional Theory (DFT)/van der Waals-Quantum Harmonic Oscillator-Wannier function (vdW-QHO-WF) method, recently developed to include the vdW interactions in approximated DFT by combining the quantum harmonic oscillator model with the maximally localized Wannier function technique, is applied to the cases of atoms and small molecules (X=Ar, CO, H-2, H2O) weakly interacting with benzene and with the ideal planar graphene surface. Comparison is also presented with the results obtained by other DFT vdW-corrected schemes, including PBE+ D, vdW-DF, vdW-DF2, rVV10, and by the simpler Local Density Approximation (LDA) and semilocal generalized gradient approximation approaches. While for the X-benzene systems all the considered vdW-corrected schemes perform reasonably well, it turns out that an accurate description of the X-graphene interaction requires a proper treatment of many-body contributions and of short-range screening effects, as demonstrated by adopting an improved version of the DFT/vdW-QHO-WF method. We also comment on the widespread attitude of relying on LDA to get a rough description of weakly interacting systems. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Van der Waals bonds in density-functional theory
    Engel, E.
    Hock, A.
    Dreizler, R.M.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 61 (03): : 325021 - 325025
  • [22] van der Waals interactions in density-functional theory
    Andersson, Y
    Langreth, DC
    Lundqvist, BI
    PHYSICAL REVIEW LETTERS, 1996, 76 (01) : 102 - 105
  • [23] Adsorption of Cu, Ag, and Au atoms on graphene including van der Waals interactions
    Amft, Martin
    Lebegue, Sebastien
    Eriksson, Olle
    Skorodumova, Natalia V.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (39)
  • [24] Density functional calculations of Van der Waals clusters: NeN2+ as a case study
    Subramanian, V
    Venkatesh, K
    Prabha, DM
    Ramasami, T
    CHEMICAL PHYSICS LETTERS, 1997, 276 (1-2) : 9 - 12
  • [25] Density functional calculations of Van der Waals clusters: NeN+2 as a case study
    Subramanian, V.
    Venkatesh, K.
    Prabha, D. M.
    Ramasami, T.
    Chemical Physics Letters, 276 (1-2):
  • [26] Adsorption of water on graphene: A van der Waals density functional study
    Hamada, Ikutaro
    PHYSICAL REVIEW B, 2012, 86 (19)
  • [27] On the performance of van der Waals corrected-density functional theory in describing the atomic hydrogen physisorption on graphite
    Ferullo, Ricardo M.
    Domancich, Nicolas F.
    Castellani, Norberto J.
    CHEMICAL PHYSICS LETTERS, 2010, 500 (4-6) : 283 - 286
  • [28] The van der Waals coefficients between carbon nanostructures and small molecules: A time-dependent density functional theory study
    Kamal, C.
    Ghanty, T. K.
    Banerjee, Arup
    Chakrabarti, Aparna
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (16):
  • [29] Cohesive properties of noble metals by van der Waals-corrected density functional theory: Au, Ag, and Cu as case studies
    Ambrosetti, Alberto
    Silvestrelli, Pier Luigi
    PHYSICAL REVIEW B, 2016, 94 (04)
  • [30] Adsorption of polyiodobenzene molecules on the Pt(111) surface using van der Waals density functional theory
    Johnston, Karen
    Pekoz, Rengin
    Donadio, Davide
    SURFACE SCIENCE, 2016, 644 : 113 - 121