Rank-width and well-quasi-ordering of skew-symmetric or symmetric matrices

被引:7
|
作者
Oum, Sang-il [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
Well-quasi-order; Delta-matroid; Rank-width; Branch-width; Principal pivot transformation; Schur complement; GRAPH MINORS; BRANCH-WIDTH; TREE-WIDTH; MATROIDS; THEOREM;
D O I
10.1016/j.laa.2011.09.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that every infinite sequence of skew-symmetric or symmetric matrices M-1, M-2, ... over a fixed finite field must have a pair M-i, M-j (i < j) such that M-i is isomorphic to a principal submatrix of the Schur complement of a nonsingular principal submatrix in M-j, if those matrices have bounded rank-width. This generalizes three theorems on well-quasi-ordering of graphs or matroids admitting good tree-like decompositions; (1) Robertson and Seymour's theorem for graphs of bounded tree-width, (2) Geelen, Gerards, and Whittle's theorem for matroids representable over a fixed finite field having bounded branch-width, and (3) Oum's theorem for graphs of bounded rank-width with respect to pivot-minors. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2008 / 2036
页数:29
相关论文
共 50 条
  • [41] Symmetric and Skew-Symmetric {0,±1}-Matrices with Large Determinants
    Greaves, Gary
    Suda, Sho
    JOURNAL OF COMBINATORIAL DESIGNS, 2017, 25 (11) : 507 - 522
  • [42] On permanental identities of symmetric and skew-symmetric matrices in characteristic p
    Valenti, A
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1998, 41 (01): : 118 - 124
  • [43] Conformal mapping among Orthogonal, Symmetric, and Skew-Symmetric matrices
    Mortari, D
    SPACEFLIGHT MECHANICS 2003, PTS 1-3, 2003, 114 : 1285 - 1301
  • [44] Matrices of SL that are the Product of Two Skew-Symmetric Matrices
    Dong, Lei
    Huang, Lei
    Shao, Changpeng
    Wen, Yong
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (01) : 475 - 489
  • [45] Exponentials of skew-symmetric matrices and logarithms of orthogonal matrices
    Cardoso, Joao R.
    Leite, F. Silva
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (11) : 2867 - 2875
  • [46] On Symmetric and Skew-Symmetric Operators
    Benhida, Chafiq
    Cho, Muneo
    Ko, Eungil
    Lee, Ji Eun
    FILOMAT, 2018, 32 (01) : 293 - 303
  • [47] DETERMINANT OF A CLASS OF SKEW-SYMMETRIC TOEPLITZ MATRICES
    ANDRES, TH
    HOSKINS, WD
    STANTON, RG
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1976, 14 (02) : 179 - 186
  • [48] Bicriterion seriation methods for skew-symmetric matrices
    Brusco, MJ
    Stahl, S
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2005, 58 : 333 - 343
  • [49] MATRICES A = I + H, H SKEW-SYMMETRIC
    BUCKLEY, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1974, 54 (02): : 125 - 126
  • [50] Computation of functions of Hamiltonian and skew-symmetric matrices
    Del Buono, N.
    Lopez, L.
    Politi, T.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (04) : 1284 - 1297