Rank-width and well-quasi-ordering of skew-symmetric or symmetric matrices

被引:7
|
作者
Oum, Sang-il [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
Well-quasi-order; Delta-matroid; Rank-width; Branch-width; Principal pivot transformation; Schur complement; GRAPH MINORS; BRANCH-WIDTH; TREE-WIDTH; MATROIDS; THEOREM;
D O I
10.1016/j.laa.2011.09.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that every infinite sequence of skew-symmetric or symmetric matrices M-1, M-2, ... over a fixed finite field must have a pair M-i, M-j (i < j) such that M-i is isomorphic to a principal submatrix of the Schur complement of a nonsingular principal submatrix in M-j, if those matrices have bounded rank-width. This generalizes three theorems on well-quasi-ordering of graphs or matroids admitting good tree-like decompositions; (1) Robertson and Seymour's theorem for graphs of bounded tree-width, (2) Geelen, Gerards, and Whittle's theorem for matroids representable over a fixed finite field having bounded branch-width, and (3) Oum's theorem for graphs of bounded rank-width with respect to pivot-minors. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2008 / 2036
页数:29
相关论文
共 50 条
  • [31] Orthogonal invariants of skew-symmetric matrices
    Lopatin, A. A.
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (08): : 851 - 862
  • [32] Skew-symmetric matrices and Palatini scrolls
    Daniele Faenzi
    Maria Lucia Fania
    Mathematische Annalen, 2010, 347 : 859 - 883
  • [33] Skew-symmetric matrices and Palatini scrolls
    Faenzi, Daniele
    Fania, Maria Lucia
    MATHEMATISCHE ANNALEN, 2010, 347 (04) : 859 - 883
  • [34] Principally Unimodular Skew-Symmetric Matrices
    André Bouchet
    W. H. Cunningham
    J. F. Geelen
    Combinatorica, 1998, 18 : 461 - 486
  • [35] Standard identities for skew-symmetric matrices
    Hill, Jordan Dale
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (04) : 792 - 803
  • [36] Converting immanants on skew-symmetric matrices
    Duffner, M.A.
    Guterman, A.E.
    Spiridonov, I.A.
    Linear Algebra and Its Applications, 2021, 618 : 76 - 96
  • [37] On Turnbull identity for skew-symmetric matrices
    Umeda, T
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2000, 43 : 379 - 393
  • [38] Least-square Solutions for Inverse Problem of Skew-symmetric Orthogonal Skew-symmetric Matrices
    Meng, Guo-Yan
    Liao, An-Ping
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL 1: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 189 - 192
  • [39] CLASSES OF DETERMINANTAL VARIETIES ASSOCIATED WITH SYMMETRIC AND SKEW-SYMMETRIC MATRICES
    JOZEFIAK, T
    LASCOUX, A
    PRAGACZ, P
    MATHEMATICS OF THE USSR-IZVESTIYA, 1981, 45 (03): : 575 - 586
  • [40] Pairs of Symmetric and Skew-Symmetric Toeplitz Matrices with Identical Squares
    Chugunov V.N.
    Journal of Mathematical Sciences, 2023, 272 (4) : 608 - 614