Rank-width and well-quasi-ordering of skew-symmetric or symmetric matrices

被引:7
|
作者
Oum, Sang-il [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
Well-quasi-order; Delta-matroid; Rank-width; Branch-width; Principal pivot transformation; Schur complement; GRAPH MINORS; BRANCH-WIDTH; TREE-WIDTH; MATROIDS; THEOREM;
D O I
10.1016/j.laa.2011.09.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that every infinite sequence of skew-symmetric or symmetric matrices M-1, M-2, ... over a fixed finite field must have a pair M-i, M-j (i < j) such that M-i is isomorphic to a principal submatrix of the Schur complement of a nonsingular principal submatrix in M-j, if those matrices have bounded rank-width. This generalizes three theorems on well-quasi-ordering of graphs or matroids admitting good tree-like decompositions; (1) Robertson and Seymour's theorem for graphs of bounded tree-width, (2) Geelen, Gerards, and Whittle's theorem for matroids representable over a fixed finite field having bounded branch-width, and (3) Oum's theorem for graphs of bounded rank-width with respect to pivot-minors. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2008 / 2036
页数:29
相关论文
共 50 条
  • [1] Rank-width and well-quasi-ordering
    Oum, Sang-Il
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (02) : 666 - 682
  • [2] On linear spaces of skew-symmetric matrices of constant rank
    L. Manivel
    E. Mezzetti
    manuscripta mathematica, 2005, 117 : 319 - 331
  • [3] On linear spaces of skew-symmetric matrices of constant rank
    Manivel, L
    Mezzetti, E
    MANUSCRIPTA MATHEMATICA, 2005, 117 (03) : 319 - 331
  • [4] Vector spaces of skew-symmetric matrices of constant rank
    Fania, Maria Lucia
    Mezzetti, Emilia
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (12) : 2383 - 2403
  • [5] Minimum rank of skew-symmetric matrices described by a graph
    Allison, Mary
    Bodine, Elizabeth
    DeAlba, Luz Maria
    Debnath, Joyati
    DeLoss, Laura
    Garnett, Colin
    Grout, Jason
    Hogben, Leslie
    Im, Bokhee
    Kim, Hana
    Nair, Reshmi
    Pryporova, Olga
    Savage, Kendrick
    Shader, Bryan
    Wehe, Amy Wangsness
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (10) : 2457 - 2472
  • [6] SUMS OF ORTHOGONAL, SYMMETRIC, AND SKEW-SYMMETRIC MATRICES
    de la Cruz, Ralph john
    Paras, Agnes
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 655 - 660
  • [7] On skew-symmetric differentiation matrices
    Iserles, Arieh
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (02) : 435 - 451
  • [8] SKEW-SYMMETRIC MATRICES AND THE PFAFFIAN
    EGECIOGLU, O
    ARS COMBINATORIA, 1990, 29 : 107 - 116
  • [9] PFAFFIANS AND SKEW-SYMMETRIC MATRICES
    HEYMANS, P
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1969, 19 : 730 - &
  • [10] Almost skew-symmetric matrices
    McDonald, JJ
    Psarrakos, PJ
    Tsatsomeros, MJ
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2004, 34 (01) : 269 - 288