Finding Influential Genes Using Gene Expression Data and Boolean Models of Metabolic Networks

被引:1
|
作者
Tamura, Takeyuki [1 ]
Akutsu, Tatsuya [1 ]
Lin, Chun-Yu [2 ]
Yang, Jinn-Moon [2 ]
机构
[1] Kyoto Univ, Bioinformat Ctr, Inst Chem Res, Uji, Kyoto, Japan
[2] Natl Chiao Tung Univ, Inst Bioinformat & Syst Biol, Hsinchu, Taiwan
关键词
gene expression; metabolic networks; marker genes; driver genes; BREAST-CANCER; METASTASIS; STRATEGIES; MUTATIONS; TAMOXIFEN; GENOMES; DRIVER;
D O I
10.1109/BIBE.2016.25
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Selection of influential genes using gene expression data from normal and disease samples is an important topic in bioinformatics. In this paper, we propose a novel computational method for the problem, which combines gene expression patterns from normal and disease samples with a mathematical model of metabolic networks. This method seeks a set of k genes knockout of which drives the state of the metabolic network towards that in the disease samples. We adopt a Boolean model of metabolic networks and formulate the problem as a maximization problem under an integer linear programming framework. We applied the proposed method to selection of influential genes using gene expression data from normal samples and disease (head and neck cancer) samples. The result suggests that the proposed method can select more biologically relevant genes than an existing P-value based ranking method can.
引用
下载
收藏
页码:57 / 63
页数:7
相关论文
共 50 条
  • [31] Behavioral characterization: finding and using the influential factors in software process simulation models
    Houston, DX
    Ferreira, S
    Collofello, JS
    Montgomery, DC
    Mackulak, GT
    Shunk, DL
    JOURNAL OF SYSTEMS AND SOFTWARE, 2001, 59 (03) : 259 - 270
  • [32] Finding Influential Nodes in Complex Networks Using Nearest Neighborhood Trust Value
    Hajarathaiah, Koduru
    Enduri, Murali Krishna
    Anamalamudi, Satish
    COMPLEX NETWORKS & THEIR APPLICATIONS X, VOL 2, 2022, 1016 : 253 - 264
  • [33] Finding influential nodes for integration in brain networks using optimal percolation theory
    Gino Del Ferraro
    Andrea Moreno
    Byungjoon Min
    Flaviano Morone
    Úrsula Pérez-Ramírez
    Laura Pérez-Cervera
    Lucas C. Parra
    Andrei Holodny
    Santiago Canals
    Hernán A. Makse
    Nature Communications, 9
  • [34] Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks
    Lähdesmäki, H
    Hautaniemi, S
    Shmulevich, I
    Yli-Harja, O
    SIGNAL PROCESSING, 2006, 86 (04) : 814 - 834
  • [35] Analysis of gene expression data using convolutional neural networks
    Koudijs, Karel K. M.
    Guchelaar, Henk-Jan
    Bohringer, Stefan
    HUMAN HEREDITY, 2023, 88 (SUPPL 1) : 14 - 14
  • [36] Integration of biological networks and gene expression data using Cytoscape
    Melissa S Cline
    Michael Smoot
    Ethan Cerami
    Allan Kuchinsky
    Nerius Landys
    Chris Workman
    Rowan Christmas
    Iliana Avila-Campilo
    Michael Creech
    Benjamin Gross
    Kristina Hanspers
    Ruth Isserlin
    Ryan Kelley
    Sarah Killcoyne
    Samad Lotia
    Steven Maere
    John Morris
    Keiichiro Ono
    Vuk Pavlovic
    Alexander R Pico
    Aditya Vailaya
    Peng-Liang Wang
    Annette Adler
    Bruce R Conklin
    Leroy Hood
    Martin Kuiper
    Chris Sander
    Ilya Schmulevich
    Benno Schwikowski
    Guy J Warner
    Trey Ideker
    Gary D Bader
    Nature Protocols, 2007, 2 : 2366 - 2382
  • [37] Integration of biological networks and gene expression data using Cytoscape
    Cline, Melissa S.
    Smoot, Michael
    Cerami, Ethan
    Kuchinsky, Allan
    Landys, Nerius
    Workman, Chris
    Christmas, Rowan
    Avila-Campilo, Iliana
    Creech, Michael
    Gross, Benjamin
    Hanspers, Kristina
    Isserlin, Ruth
    Kelley, Ryan
    Killcoyne, Sarah
    Lotia, Samad
    Maere, Steven
    Morris, John
    Ono, Keiichiro
    Pavlovic, Vuk
    Pico, Alexander R.
    Vailaya, Aditya
    Wang, Peng-Liang
    Adler, Annette
    Conklin, Bruce R.
    Hood, Leroy
    Kuiper, Martin
    Sander, Chris
    Schmulevich, Ilya
    Schwikowski, Benno
    Warner, Guy J.
    Ideker, Trey
    Bader, Gary D.
    NATURE PROTOCOLS, 2007, 2 (10) : 2366 - 2382
  • [38] CABeRNET: a Cytoscape app for augmented Boolean models of gene regulatory NETworks
    Andrea Paroni
    Alex Graudenzi
    Giulio Caravagna
    Chiara Damiani
    Giancarlo Mauri
    Marco Antoniotti
    BMC Bioinformatics, 17
  • [39] Boolean Association Rule Mining on Microarray Gene Expression Data
    Vengateshkumar, R.
    Alagukumar, S.
    Lawrance, R.
    ADVANCED COMPUTING AND INTELLIGENT ENGINEERING, 2020, 1082 : 99 - 111
  • [40] CABeRNET: a Cytoscape app for augmented Boolean models of gene regulatory NETworks
    Paroni, Andrea
    Graudenzi, Alex
    Caravagna, Giulio
    Damiani, Chiara
    Mauri, Giancarlo
    Antoniotti, Marco
    BMC BIOINFORMATICS, 2016, 17