Finding Influential Genes Using Gene Expression Data and Boolean Models of Metabolic Networks

被引:1
|
作者
Tamura, Takeyuki [1 ]
Akutsu, Tatsuya [1 ]
Lin, Chun-Yu [2 ]
Yang, Jinn-Moon [2 ]
机构
[1] Kyoto Univ, Bioinformat Ctr, Inst Chem Res, Uji, Kyoto, Japan
[2] Natl Chiao Tung Univ, Inst Bioinformat & Syst Biol, Hsinchu, Taiwan
来源
2016 IEEE 16TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE) | 2016年
关键词
gene expression; metabolic networks; marker genes; driver genes; BREAST-CANCER; METASTASIS; STRATEGIES; MUTATIONS; TAMOXIFEN; GENOMES; DRIVER;
D O I
10.1109/BIBE.2016.25
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Selection of influential genes using gene expression data from normal and disease samples is an important topic in bioinformatics. In this paper, we propose a novel computational method for the problem, which combines gene expression patterns from normal and disease samples with a mathematical model of metabolic networks. This method seeks a set of k genes knockout of which drives the state of the metabolic network towards that in the disease samples. We adopt a Boolean model of metabolic networks and formulate the problem as a maximization problem under an integer linear programming framework. We applied the proposed method to selection of influential genes using gene expression data from normal samples and disease (head and neck cancer) samples. The result suggests that the proposed method can select more biologically relevant genes than an existing P-value based ranking method can.
引用
收藏
页码:57 / 63
页数:7
相关论文
共 50 条
  • [21] Guidelines for extracting biologically relevant context-specific metabolic models using gene expression data
    Gopalakrishnan, Saratram
    Joshi, Chintan J.
    Valderrama-Gomez, Miguel A.
    Icten, Elcin
    Rolandi, Pablo
    Johnson, William
    Kontoravdi, Cleo
    Lewis, Nathan E.
    METABOLIC ENGINEERING, 2023, 75 : 181 - 191
  • [22] Analysis of Gene Interactions Using Restricted Boolean Networks and Time-Series Data
    Higa, Carlos H. A.
    Louzada, Vitor H. P.
    Hashimoto, Ronaldo F.
    BIOINFORMATICS RESEARCH AND APPLICATIONS, PROCEEDINGS, 2010, 6053 : 61 - 76
  • [23] Methods of robustness analysis for Boolean models of gene control networks
    Chaves, M.
    Sontag, E. D.
    Albert, R.
    IEE PROCEEDINGS SYSTEMS BIOLOGY, 2006, 153 (04): : 154 - 167
  • [24] BTR: training asynchronous Boolean models using single-cell expression data
    Chee Yee Lim
    Huange Wang
    Steven Woodhouse
    Nir Piterman
    Lorenz Wernisch
    Jasmin Fisher
    Berthold Göttgens
    BMC Bioinformatics, 17
  • [25] BTR: training asynchronous Boolean models using single-cell expression data
    Lim, Chee Yee
    Wang, Huange
    Woodhouse, Steven
    Piterman, Nir
    Wernisch, Lorenz
    Fisher, Jasmin
    Gottgens, Berthold
    BMC BIOINFORMATICS, 2016, 17
  • [26] Clustering genes using gene expression and text literature data
    Yang, CY
    Zeng, EL
    Li, T
    Narasimhan, G
    2005 IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE, PROCEEDINGS, 2005, : 329 - 340
  • [27] Functional clustering of genes using microarray gene expression data
    Paul Spellman
    Audrey Gasch
    Michael Eisen
    Camilla Kao
    Patrick Brown
    David Botstein
    Nature Genetics, 1999, 23 (Suppl 3) : 75 - 75
  • [28] ALGORITHM FOR SELECTION OF INFORMATIVE GENES USING GENE EXPRESSION DATA
    Sharma, Nitesh Kumar
    Mishra, Dwijesh Chandra
    Farooqi, Mohammad Samir
    Budhlakoti, Neeraj
    Chaturvedi, Krishna Kumar
    Das, Samrendra
    Kumar, Anil
    Rai, Anil
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 : 2419 - 2426
  • [29] Boolean Networks as a Link Between Knowledge, Data, and Quantitative Models
    Pauleve, Loic
    COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY, CMSB 2022, 2022, 13447 : XV - XV
  • [30] Effects of constitutive gene expression on the dynamics of random Boolean networks
    Hallinan, Jennifer
    Bradley, Daniel
    Wiles, Janet
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 2340 - 2346