CONDITIONAL LIMIT THEOREMS FOR THE TERMS OF A RANDOM WALK REVISITED

被引:0
|
作者
Bar-Lev, Shaul K. [1 ]
Schulte-Geers, Ernst
Stadje, Wolfgang [2 ]
机构
[1] Univ Haifa, IL-31999 Haifa, Israel
[2] Univ Osnabruck, D-49069 Osnabruck, Germany
关键词
Conditional limit theorem; sums of i.i.d. random variables; renewal theory; convergence in total variation; stable distribution;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we derive limit theorems for the conditional distribution of X-1 given S-n = s(n) as n -> infinity, where the X-i are independent and identically distributed (i.i.d.) random variables, S-n = X-1 + ... + X-n, and s(n)/n converges or s(n) s is constant. We obtain convergence in total variation of P-X1 vertical bar Sn/n=s in, to a distribution associated to that of X-1 and of P-nX1 vertical bar Sn=s to a gamma distribution. The case of stable distributions (to which the method of associated distributions cannot be applied) is studied in detail.
引用
收藏
页码:871 / 882
页数:12
相关论文
共 50 条
  • [31] Limit Theorems for the One-Dimensional Random Walk with Random Resetting to the Maximum
    Van Hao Can
    Thai Son Doan
    Van Quyet Nguyen
    Journal of Statistical Physics, 2021, 183
  • [32] Limit Theorems for the One-Dimensional Random Walk with Random Resetting to the Maximum
    Can, Van Hao
    Doan, Thai Son
    Nguyen, Van Quyet
    JOURNAL OF STATISTICAL PHYSICS, 2021, 183 (02)
  • [33] Conditional versions of limit theorems for conditionally associated random variables
    Yuan, De-Mei
    Yang, Yu-Kun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 376 (01) : 282 - 293
  • [34] Conditional limit theorems for conditionally negatively associated random variables
    De-Mei Yuan
    Jun An
    Xiu-Shan Wu
    Monatshefte für Mathematik, 2010, 161 : 449 - 473
  • [35] Conditional limit theorems for conditionally negatively associated random variables
    Yuan, De-Mei
    An, Jun
    Wu, Xiu-Shan
    MONATSHEFTE FUR MATHEMATIK, 2010, 161 (04): : 449 - 473
  • [36] Limit theorems for random walk excursion conditioned to enclose a typical area
    Carmona, Philippe
    Petrelis, Nicolas
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 101 (02): : 682 - 713
  • [37] Limit Theorems for the ‘Laziest’ Minimal Random Walk Model of Elephant Type
    Tatsuya Miyazaki
    Masato Takei
    Journal of Statistical Physics, 2020, 181 : 587 - 602
  • [38] Functional limit theorems for U-statistics indexed by a random walk
    Cabus, P
    Guillotin-Plantard, N
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2002, 101 (01) : 143 - 160
  • [39] Transient random walk in symmetric exclusion: limit theorems and an Einstein relation
    Avena, Luca
    dos Santos, Renato Soares
    Voellering, Florian
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (02): : 693 - 709
  • [40] Limit Theorems for the 'Laziest' Minimal Random Walk Model of Elephant Type
    Miyazaki, Tatsuya
    Takei, Masato
    JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (02) : 587 - 602