Statistical mechanics of axisymmetric vortex rings

被引:2
|
作者
Ganesh, R [1 ]
Avinash, K [1 ]
机构
[1] Inst Plasma Res, Bhat 382428, Gandhinagar, India
关键词
D O I
10.1103/PhysRevE.65.026402
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We construct maximum entropy states of a collection of interacting uniform (omega/R = const) axisymmetric vortex rings in a semiperiodic bounded volume. Following Miller [Phys. Rev. Lett, 65, 2137 (1990)] and Robert and Sommeria [J. Fluid Mech. 229, 291 (1991)], we obtain an equilibrium measure that preserves all the ideal invariants such as the total energy, total impulse, circulation, and an infinity of Casimirs. The numerical solution for a wide range of total flow energy and for given values of total circulation and total impulse is presented.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Pinch-off of non-axisymmetric vortex rings
    O'Farrell, Clara
    Dabiri, John O.
    JOURNAL OF FLUID MECHANICS, 2014, 740 : 61 - 96
  • [22] Coaxial axisymmetric vortex rings: 150 years after Helmholtz
    Viatcheslav V. Meleshko
    Theoretical and Computational Fluid Dynamics, 2010, 24 : 403 - 431
  • [23] QUANTIZED VORTEX MOTION THROUGH RINGS IN SCHRODINGER MECHANICS
    RIESS, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (15): : 5179 - 5188
  • [24] THE STATISTICAL-MECHANICS OF A MELT OF POLYMER RINGS
    BRERETON, MG
    VILGIS, TA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (05): : 1149 - 1167
  • [26] Statistical mechanics of Beltrami flows in axisymmetric geometry: equilibria and bifurcations
    Naso, Aurore
    Thalabard, Simon
    Collette, Gilles
    Chavanis, Pierre-Henri
    Dubrulle, Berengere
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [27] Statistical mechanics of Beltrami flows in axisymmetric geometry: Theory reexamined
    Naso, Aurore
    Monchaux, Romain
    Chavanis, Pierre-Henri
    Dubrulle, Berengere
    PHYSICAL REVIEW E, 2010, 81 (06):
  • [28] Non-equilibrium statistical mechanics for a vortex gas
    Newton, PK
    Mezic, I
    JOURNAL OF TURBULENCE, 2002, 3
  • [29] Statistical mechanics of the Euler equations without vortex stretching
    Wu, Tong
    Bos, Wouter J. T.
    JOURNAL OF FLUID MECHANICS, 2021, 929
  • [30] Statistical mechanics and thermodynamics of turbulent quantum vortex tangles
    Joul, D.
    Mongiovi, M. S.
    Sciacca, M.
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2010, 1 (02): : 216 - 229