Non-equilibrium statistical mechanics for a vortex gas

被引:0
|
作者
Newton, PK [1 ]
Mezic, I
机构
[1] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA
[2] Univ So Calif, Ctr Appl Math Sci, Los Angeles, CA 90089 USA
[3] UC Santa Barbara, Dept Mech & Environm Engn, Santa Barbara, CA 93105 USA
来源
JOURNAL OF TURBULENCE | 2002年 / 3卷
关键词
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Kinetic equations governing the evolution of the reduced probability distribution functions associated with low- order vortex interactions making up an inviscid two- dimensional turbulent. fluid on the surface of a sphere are derived. The vortex gas is viewed as a coupling, via the Liouville equation, between monopoles, dipoles, and tripoles, and as such, is based on ' integrable' ballistic elements whose complex interactions generate turbulent. fluctuations. Assuming the dilute regime of a neutral vortex gas, pairwise interactions between monopoles and dipoles, dipoles and tripoles, monopoles and tripoles dominate over triple interactions such as monopole - dipole - tripole ones. Our general closure assumption used to arrive at a lower- order system is based on the idea of decomposing quadrupolar interactions into all possible lower- order interactions among monopoles, dipoles, and tripoles using a weighted average of these interactions with coefficients based on combinatorial likelihood. This is a far less restrictive assumption than the vortex - dipole - chaos assumption of Marmanis ( Marmanis H 1998 Proc. R. Soc. A 454 587 - 606) and leads to a fully coupled system of nine equations for the interaction of ballistic elements where each of the three ' building blocks' making up the turbulent gas is treated on an equal footing.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] NON-EQUILIBRIUM STATISTICAL MECHANICS
    WALLIS, G
    [J]. ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-LEIPZIG, 1964, 227 (1-2): : 140 - &
  • [2] A model of non-equilibrium statistical mechanics
    Piasecki, J
    Sinai, YG
    [J]. DYNAMICS: MODELS AND KINETIC METHODS FOR NON-EQUILIBRIUM MANY BODY SYSTEMS, 2000, 371 : 191 - 199
  • [3] Non-Equilibrium Statistical Mechanics of Turbulence
    Ruelle, David
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2014, 157 (02) : 205 - 218
  • [4] Entropy and Non-Equilibrium Statistical Mechanics
    Kovacs, Robert
    Scarfone, Antonio M.
    Abe, Sumiyoshi
    [J]. ENTROPY, 2020, 22 (05)
  • [5] Theory for non-equilibrium statistical mechanics
    Attard, Phil
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2006, 8 (31) : 3585 - 3611
  • [6] ON STATISTICAL MECHANICS OF NON-EQUILIBRIUM PHENOMENA
    UHLHORN, U
    [J]. ARKIV FOR FYSIK, 1960, 17 (3-4): : 193 - 232
  • [7] Non-Equilibrium Statistical Mechanics of Turbulence
    David Ruelle
    [J]. Journal of Statistical Physics, 2014, 157 : 205 - 218
  • [8] ENTROPY IN NON-EQUILIBRIUM STATISTICAL MECHANICS
    MURAKHVE.YE
    [J]. DOKLADY AKADEMII NAUK SSSR, 1969, 184 (01): : 78 - &
  • [9] MEIXNER,J - STATISTICAL MECHANICS OF EQUILIBRIUM AND NON-EQUILIBRIUM
    ZWANZIG, RW
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1966, 282 (04): : 264 - &
  • [10] Turbulence as a Problem in Non-equilibrium Statistical Mechanics
    Nigel Goldenfeld
    Hong-Yan Shih
    [J]. Journal of Statistical Physics, 2017, 167 : 575 - 594