共 50 条
A quantile inequality for location-scale distributions
被引:1
|作者:
Elster, Clemens
[1
]
Klauenberg, Katy
[1
]
机构:
[1] Phys Tech Bundesanstalt, Abbestr 2-12, D-10587 Berlin, Germany
关键词:
Quantile inequality;
Location-scale distribution;
Attribute sampling;
AREA;
D O I:
10.1016/j.spl.2020.108851
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
It is shown that when X follows a location-scale distribution with continuous density function that has support R and 0 < q < p < 1, then P(vertical bar X vertical bar <= Delta) >= q implies P(vertical bar X vertical bar <= lambda Delta) >= p for some lambda > 1 and all values of the location and scale parameters. An explicit expression for the minimum lambda is proven for the family of scaled and shifted t-distributions. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文