Development of multi-frequency ESR system for high-pressure measurements up to 2.5 GPa

被引:32
|
作者
Sakurai, T. [1 ]
Fujimoto, K. [2 ]
Matsui, R. [2 ]
Kawasaki, K. [2 ]
Okubo, S. [3 ]
Ohta, H. [2 ,3 ]
Matsubayashi, K. [4 ]
Uwatoko, Y. [4 ]
Tanaka, H. [5 ]
机构
[1] Kobe Univ, Ctr Supports Res & Educ Act, Nada Ku, Kobe, Hyogo 6578501, Japan
[2] Kobe Univ, Grad Sch Sci, Nada Ku, Kobe, Hyogo 6578501, Japan
[3] Kobe Univ, Mol Photosci Res Ctr, Nada Ku, Kobe, Hyogo 6578501, Japan
[4] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[5] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528550, Japan
基金
日本学术振兴会;
关键词
High-pressure ESR; Hybrid-type pressure cell; ZrO2-based ceramic; NiSnCl6 center dot 6H(2)O; CsCuCl3; HIGH-FIELD; CELL;
D O I
10.1016/j.jmr.2015.08.005
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A new piston-cylinder pressure cell for electron spin resonance (ESR) has been developed. The pressure cell consists of a double-layer hybrid-type cylinder with internal components made of the ZrO2-based ceramics. It can generate a pressure of 2 GPa repeatedly and reaches a maximum pressure of around 2.5 GPa. A high-pressure ESR system using a cryogen-free superconducting magnet up 10T has also been developed for this hybrid-type pressure cell. The frequency region is from 50 GHz to 400 GHz. This is the first time a pressure above 2 GPa has been achieved in multi-frequency ESR system using a piston-cylinder pressure cell. We demonstrate its potential by showing the results of the high-pressure ESR of the S = 1 system with the single ion anisotropy NiSnCl6 center dot 6H(2)O and the S = 1/2 quantum spin system CsCuCl3. We performed ESR measurements of these systems above 2 GPa successfully. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:108 / 113
页数:6
相关论文
共 50 条
  • [31] High-pressure Raman study of solid hydrogen up to 300 GPa
    Huang, Xiaoli
    Li, Fangfei
    Huang, Yanping
    Wu, Gang
    Li, Xin
    Zhou, Qiang
    Liu, Bingbing
    Cui, Tian
    CHINESE PHYSICS B, 2016, 25 (03)
  • [32] Raman high-pressure study of butane isomers up to 40 GPa
    Kudryavtsev, Daniil A.
    Kutcherov, Vladimir G.
    Dubrovinsky, Leonid S.
    AIP ADVANCES, 2018, 8 (11):
  • [33] High-pressure NMR study of liquid propanol up to 3 GPa
    Hakes, M
    Zeidler, MD
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2002, 4 (20) : 5119 - 5122
  • [34] High-pressure Brillouin study on hydrogen chloride up to 8 GPa
    Sasaki, S
    Kamabuchi, K
    Kume, T
    Shimizu, H
    PHYSICA B, 1999, 263 : 666 - 669
  • [35] High-pressure evolution of the refractive index of MgO up to 140 GPa
    Schifferle, Lukas
    Speziale, Sergio
    Lobanov, Sergey S.
    JOURNAL OF APPLIED PHYSICS, 2022, 132 (12)
  • [36] High-pressure structural study of solid mercury up to 200 GPa
    Takemura, K.
    Nakano, S.
    Ohishi, Y.
    Nakamoto, Y.
    Fujihisa, H.
    MATERIALS RESEARCH EXPRESS, 2015, 2 (01)
  • [37] High-pressure Raman study of solid hydrogen up to 300 GPa
    黄晓丽
    李芳菲
    黄艳萍
    吴刚
    李鑫
    周强
    刘冰冰
    崔田
    Chinese Physics B, 2016, (03) : 39 - 43
  • [38] HIGH-PRESSURE DIFFRACTION STUDY OF CEAL2 UP TO GPA
    VEDEL, I
    REDON, AM
    LEGER, JM
    MIGNOT, JM
    FLOUQUET, J
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1986, 54-7 : 361 - 362
  • [39] High-Pressure Phase Transitions of Zinc Difluoride up to 55 GPa
    Kurzydlowski, Dominik
    Oleksiak, Anna
    Pillai, Sharad Babu
    Jha, Prafulla K.
    INORGANIC CHEMISTRY, 2020, 59 (04) : 2584 - 2593
  • [40] High-pressure/high-temperature behavior of the methane-ammonia-water system up to 3 GPa
    Kurnosov, Alexander
    Dubrovinsky, Leonid
    Kuznetsov, Alexei
    Dmitriev, Vladimir
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES, 2006, 61 (12): : 1573 - 1576