Development of multi-frequency ESR system for high-pressure measurements up to 2.5 GPa

被引:32
|
作者
Sakurai, T. [1 ]
Fujimoto, K. [2 ]
Matsui, R. [2 ]
Kawasaki, K. [2 ]
Okubo, S. [3 ]
Ohta, H. [2 ,3 ]
Matsubayashi, K. [4 ]
Uwatoko, Y. [4 ]
Tanaka, H. [5 ]
机构
[1] Kobe Univ, Ctr Supports Res & Educ Act, Nada Ku, Kobe, Hyogo 6578501, Japan
[2] Kobe Univ, Grad Sch Sci, Nada Ku, Kobe, Hyogo 6578501, Japan
[3] Kobe Univ, Mol Photosci Res Ctr, Nada Ku, Kobe, Hyogo 6578501, Japan
[4] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[5] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528550, Japan
基金
日本学术振兴会;
关键词
High-pressure ESR; Hybrid-type pressure cell; ZrO2-based ceramic; NiSnCl6 center dot 6H(2)O; CsCuCl3; HIGH-FIELD; CELL;
D O I
10.1016/j.jmr.2015.08.005
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A new piston-cylinder pressure cell for electron spin resonance (ESR) has been developed. The pressure cell consists of a double-layer hybrid-type cylinder with internal components made of the ZrO2-based ceramics. It can generate a pressure of 2 GPa repeatedly and reaches a maximum pressure of around 2.5 GPa. A high-pressure ESR system using a cryogen-free superconducting magnet up 10T has also been developed for this hybrid-type pressure cell. The frequency region is from 50 GHz to 400 GHz. This is the first time a pressure above 2 GPa has been achieved in multi-frequency ESR system using a piston-cylinder pressure cell. We demonstrate its potential by showing the results of the high-pressure ESR of the S = 1 system with the single ion anisotropy NiSnCl6 center dot 6H(2)O and the S = 1/2 quantum spin system CsCuCl3. We performed ESR measurements of these systems above 2 GPa successfully. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:108 / 113
页数:6
相关论文
共 50 条
  • [21] High-pressure structural systematics in neodymium up to 302 GPa
    Finnegan, S. E.
    Storm, C., V
    Pace, E. J.
    McMahon, M., I
    MacLeod, S. G.
    Plekhanov, E.
    Bonini, N.
    Weber, C.
    PHYSICAL REVIEW B, 2021, 103 (13)
  • [22] High-pressure melting curve of sulfur up to 65 GPa
    Arveson, Sarah M.
    Meng, Yue
    Lee, June
    Lee, Kanani K. M.
    PHYSICAL REVIEW B, 2019, 100 (05)
  • [23] High-pressure structural properties of naphthalene up to 6 GPa
    Likhacheva, Anna Y.
    Rashchenko, Sergey V.
    Litasov, Konstantin D.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2014, 47 : 984 - 991
  • [24] High-pressure structural systematics in samarium up to 222 GPa
    Finnegan, S. E.
    Pace, E. J.
    Storm, C., V
    McMahon, M., I
    MacLeod, S. G.
    Liermann, H-P
    Glazyrin, K.
    PHYSICAL REVIEW B, 2020, 101 (17)
  • [25] High-pressure UV spectroscopy on oxygen up to 1.5 GPa
    Akahama, Y
    Kawamura, H
    CHEMICAL PHYSICS LETTERS, 2004, 392 (4-6) : 476 - 479
  • [26] PRESSURE-RESISTING GLASS CELL FOR HIGH-PRESSURE ESR MEASUREMENTS
    SUEISHI, Y
    YAMAMOTO, S
    NISHIMURA, N
    MEASUREMENT SCIENCE AND TECHNOLOGY, 1993, 4 (10) : 1171 - 1172
  • [27] Development of an Ultra-Low Temperature Multi-Frequency ESR Apparatus
    Hagiwara, M.
    Kashiwagi, T.
    Yashiro, H.
    Umeno, T.
    Ito, T.
    Sano, T.
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 1: CRYOGENIC TECHNOLOGIES AND APPLICATIONS, 2009, 150
  • [28] Development of high-pressure and high-field ESR system using SQUID magnetometer
    Sakurai, T.
    Fujimoto, K.
    Goto, R.
    Okubo, S.
    Ohta, H.
    Uwatoko, Y.
    JOURNAL OF MAGNETIC RESONANCE, 2012, 223 : 41 - 45
  • [29] HIGH-PRESSURE DIELECTRIC MEASUREMENTS OF SOLID HYDROGEN TO 170-GPA
    HEMLEY, RJ
    HANFLAND, M
    MAO, HK
    NATURE, 1991, 350 (6318) : 488 - 491
  • [30] High-pressure Brillouin study on hydrogen chloride up to 8 GPa
    Sasaki, S.
    Kamabuchi, K.
    Kume, T.
    Shimizu, H.
    Physica B: Condensed Matter, 1999, 263 : 666 - 669