CHARACTERISTICS OF LOVE WAVE DEVICE WITH NI PILLARS ON ZNO/R-SAPPHIRE STRUCTURE

被引:0
|
作者
Liu, Xiao-qing
Shang, Shu-lin
Wang, Yan [1 ]
Liang, Su-peng
机构
[1] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210046, Peoples R China
基金
中国国家自然科学基金;
关键词
Phononic Crystals; Finite Element Method; Electromechanical Coupling Coefficient; ACOUSTIC-WAVES; CRYSTAL;
D O I
10.1109/spawda48812.2019.9019271
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Phononic crystals (PnCs) have attracted considerable attention in recent years because of the ability to control and manipulate acoustic and elastic wave propagation. A Love wave device composed of Nickel pillars on (110)ZnO/R-sapphire substrate is constructed by using COMSOL Multiphysics. The characteristics of the device, including the phase velocity (v(p)) and the electromechanical coupling coefficient (k(2)), are theoretically analyzed by finite element method (FEM). The results show that the 1st mode of love waves appear at h(ZnO)/lambda=0.0625, while the point of occurrence is 0.31 at PnCs-free SAW structure. And the maximum electromechanical coupling coefficient(k(2)) of 3.27% is obtained by optimizing the structure of Nickel pillars, which is much higher than that of PnCs-free structure. All of the results indicate that the performances of the love wave device based on Nickel pillars/(110)ZnO/R-sapphire structure are superior to that of PnCs-free structure. And it provides a theoretical basis for designing Love wave devices with high frequency.
引用
收藏
页码:373 / 377
页数:5
相关论文
共 50 条
  • [21] Epitaxial growth of non-polar a-plane ZnO and aluminium-doped ZnO on r-sapphire using the intermittent spray pyrolysis methodology
    Russel, Cerine Treesa
    Tomas, Carmen Martinez
    Sanjose, Vicente Munoz
    APPLIED SURFACE SCIENCE ADVANCES, 2025, 25
  • [22] Simulation of a Love wave device with ZnO nanorods for high mass sensitivity
    Trivedi, Shyam
    Nemade, Harshal B.
    ULTRASONICS, 2018, 84 : 150 - 161
  • [23] p-Type Nonpolar a-ZnO:N Thin Films on r-Sapphire Substrates Grown by Molecular Beam Epitaxy
    Naoki Maekawa
    Hirotake Nakayama
    Nobuaki Yamane
    Koji Irie
    Tomoki Abe
    Hirofumi Kasada
    Kunio Ichino
    Kazuaki Akaiwa
    Journal of Electronic Materials, 2020, 49 : 4474 - 4478
  • [24] SiCl4-based reactive ion etching of ZnO and MgxZn1−xO films on r-sapphire substrates
    J. Zhu
    G. Saraf
    J. Zhong
    H. F. Sheng
    B. V. Yakshinskiy
    Y. Lu
    Journal of Electronic Materials, 2006, 35 : 1311 - 1315
  • [25] Electroluminescence from nonpolar n-ZnO/p-AlGaN heterojunction light-emitting diode on r-sapphire
    Chen, Jingwen
    Zhang, Jun
    Dai, Jiangnan
    Wu, Feng
    Wang, Shuai
    Chen, Cheng
    Long, Hanling
    Liang, Renli
    Zhao, Chong
    Chen, Changqing
    Tang, Zhiwu
    Cheng, Hailing
    He, Yunbin
    Li, Mingkai
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (11)
  • [26] SiCl4-based reactive ion etching of ZnO and MgxZn1-xO films on r-sapphire substrates
    Zhu, J.
    Saraf, G.
    Zhong, J.
    Sheng, H. F.
    Yakshinskiy, B. V.
    Lu, Y.
    JOURNAL OF ELECTRONIC MATERIALS, 2006, 35 (06) : 1311 - 1315
  • [27] Elastic and inelastic strain in submicron-thick ZnO epilayers grown on r-sapphire substrates by metalorganic vapour phase deposition
    Martinez-Tomas, Maria Carmen
    Klymov, Oleksii
    Shimazoe, Kazuki
    Sanchez-Royo, Juan Francisco
    Changarath, Mahesh Eledath
    Agouram, Said
    Munoz-Sanjose, Vicente
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2024, 80 (Pt 2) : 72 - 83
  • [28] PANI/ZnO/Quartz structure for Love wave gas sensor
    Moreira, F.
    Sarry, F.
    Nicolas-Debarnot, D.
    Elmazria, O.
    Poncin-Epaillard, F.
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2009, 47 (01):
  • [29] A study of Love wave acoustic sensors in ZnO/quartz structure
    Chu, SY
    Water, W
    Liaw, JT
    INTEGRATED FERROELECTRICS, 2002, 44 : 91 - 100
  • [30] A study of Love wave acoustic sensors in ZnO/quartz structure
    Chu, Sheng-Yuan
    Water, Walter
    Liaw, Jih-Tsang
    Integrated Ferroelectrics, 2002, 44 : 91 - 100