Integrating QSAR and read-across for environmental assessment

被引:9
|
作者
Benfenati, E. [1 ]
Roncaglioni, A. [1 ]
Petoumenou, M. I. [1 ]
Cappelli, C. I. [1 ]
Gini, G. [2 ]
机构
[1] IRCCS, Ist Ric Farmacol Mario Negri, Milan, Italy
[2] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, I-20133 Milan, Italy
关键词
read-across; BCF; REACH; QSAR; log P; BIOCONCENTRATION FACTOR BCF; CHEMICALS; MODELS;
D O I
10.1080/1062936X.2015.1078408
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Read-across and QSAR have different traditions and drawbacks. We address here two main questions: (1) How do we solve the issue of the subjectivity in the evaluation of data and results, which may be particularly critical for read-across, but may have a role also for the QSAR assessment? (2) How do we take advantage of the results of both approaches to support each other? The QSAR model starts from the training set. The presence of similar chemicals with property values close to that predicted can support the result. The approach in read-across is the opposite. The assessment is focused on the few substances similar to the target. The data quality of the similar chemicals is fundamental. A risk is poor standardization in the definition of similarity', because different approaches may be applied. Inspired by the principles of high transparency and reproducibility, a new program for read-across, called ToxRead, has been developed and made freely available (www.toxgate.eu). The output of ToxRead can be compared and integrated with the output of QSAR, within a weight-of-evidence strategy. We discuss the evaluation and integration of ToxRead and QSAR with examples of the assessment of bioconcentration factors of chemicals.
引用
收藏
页码:605 / 618
页数:14
相关论文
共 50 条
  • [31] Updates in legislation and guidance for read-across in REACH
    Bell, D.
    Anastasi, A. A.
    Andersson, N.
    Casals, J. Ballester
    Cartlidge, G.
    Cesnaitis, R.
    Gissi, A.
    Honkanen, J.
    Laitinen, J.
    Pirovano, A.
    Richarz, A.
    Stilgenbauer, E.
    Temussi, F.
    Vom Brocke, J.
    TOXICOLOGY LETTERS, 2022, 368 : S266 - S266
  • [32] A generalizable definition of chemical similarity for read-across
    Floris, Matteo
    Manganaro, Alberto
    Nicolotti, Orazio
    Medda, Ricardo
    Mangiatordi, Giuseppe Felice
    Benfenati, Emilio
    JOURNAL OF CHEMINFORMATICS, 2014, 6
  • [33] Read-across at the crossroad of chemoinformatics and regulatory science
    Mostrag-Szlichtyng, A.
    Boyer, Ivan
    Bienfait, B.
    Heldreth, B.
    Kleinoder, T.
    Marusczy, Joerg
    Tarkhov, Aleksey
    Sacher, O.
    Schwab, Christof
    Vitcheva, V.
    Rathman, J. F.
    Yang, C.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [34] Material-specific properties applied to an environmental risk assessment of engineered nanomaterials - implications on grouping and read-across concepts
    Wigger, Henning
    Nowack, Bernd
    NANOTOXICOLOGY, 2019, 13 (05) : 623 - 643
  • [35] A strategy to define applicability domains for read-across
    Pestana, Cynthia
    Enoch, Steven J.
    Firman, James W.
    Madden, Judith C.
    Spinu, Nicoleta
    Cronin, Mark T. D.
    COMPUTATIONAL TOXICOLOGY, 2022, 22
  • [36] Updates in legislation and advice for read-across in REACH
    Bell, D.
    Anastasi, A. A.
    Andersson, N.
    Casals, J. Ballester
    Cartlidge, G.
    Cesnaitis, R.
    Gissi, A.
    Honkanen, J.
    Laitinen, J.
    Piranova, A.
    Richarz, A.
    Stilgenbauer, E.
    Temussi, F.
    vom Brocke, J.
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2023, 396 : S55 - S55
  • [37] Supporting Read-Across Using Biological Data
    Zhu, Hao
    Bouhifd, Mounir
    Donley, Elizabeth
    Egnash, Laura
    Kleinstreuer, Nicole
    Kroese, E. Dinant
    Liu, Zhichao
    Luechtefeld, Thomas
    Palmer, Jessica
    Pamies, David
    Shen, Jie
    Strauss, Volker
    Wu, Shengde
    Hartung, Thomas
    ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION, 2016, 33 (02) : 167 - 182
  • [38] Assessing metabolic similarity for read-across predictions
    Yordanova, Darina G.
    Schultz, Terry W.
    Kuseva, Chanita D.
    Mekenyan, Ovanes G.
    COMPUTATIONAL TOXICOLOGY, 2021, 18
  • [39] Integrating (Q)SAR models, expert systems and read-across approaches for the prediction of developmental toxicity
    Hewitt, M.
    Ellison, C. M.
    Enoch, S. J.
    Madden, J. C.
    Cronin, M. T. D.
    REPRODUCTIVE TOXICOLOGY, 2010, 30 (01) : 147 - 160
  • [40] Automated read-across workflow for predicting acute oral toxicity: I. The decision scheme in the QSAR toolbox
    Kutsarova, Stela
    Mehmed, Aycel
    Cherkezova, Daniela
    Stoeva, Stoyanka
    Georgiev, Marin
    Petkov, Todor
    Chapkanov, Atanas
    Schultz, Terry W.
    Mekenyan, Ovanes G.
    REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2021, 125