A novel second-order fitted computational method for a singularly perturbed Volterra integro-differential equation

被引:30
|
作者
Yapman, Omer [1 ]
Amiraliyev, Gabil M. [1 ]
机构
[1] Erzincan Binali Yildirim Univ, Fac Arts & Sci, Dept Math, TR-24100 Erzincan, Turkey
关键词
Volterra integro-differential equation; singular perturbation; finite difference; uniform convergence; DIFFERENCE SCHEME;
D O I
10.1080/00207160.2019.1614565
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the second-order accurate homogeneous (non-hybrid) type difference scheme for solving a singularly perturbed first-order Volterra integro-differential equation. It is shown that the method displays uniform convergence of on a special non-uniform mesh, where N is the mesh parameter. Numerical results are included to verify the theoretical estimates.
引用
收藏
页码:1293 / 1302
页数:10
相关论文
共 50 条
  • [21] The coupled method for singularly perturbed Volterra integro-differential equations
    Tao, Xia
    Zhang, Yinghui
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [22] A Novel Uniform Numerical Approach to Solve a Singularly Perturbed Volterra Integro-Differential Equation
    M. Cakir
    E. Cimen
    Computational Mathematics and Mathematical Physics, 2023, 63 : 1800 - 1816
  • [23] A posteriori error estimation for a singularly perturbed Volterra integro-differential equation
    Jian Huang
    Zhongdi Cen
    Aimin Xu
    Li-Bin Liu
    Numerical Algorithms, 2020, 83 : 549 - 563
  • [24] A posteriori error estimation for a singularly perturbed Volterra integro-differential equation
    Huang, Jian
    Cen, Zhongdi
    Xu, Aimin
    Liu, Li-Bin
    NUMERICAL ALGORITHMS, 2020, 83 (02) : 549 - 563
  • [25] A Novel Uniform Numerical Approach to Solve a Singularly Perturbed Volterra Integro-Differential Equation
    Cakir, M.
    Cimen, E.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2023, 63 (10) : 1800 - 1816
  • [26] An efficient numerical method for a singularly perturbed Volterra-Fredholm integro-differential equation
    Durmaz, Muhammet Enes
    Yapman, Omer
    Kudu, Mustafa
    Amiraliyev, Gabil M.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (02): : 326 - 339
  • [27] A Monotone Type Second-Order Numerical Method for Volterra–Fredholm Integro-Differential Equation
    I. Amirali
    B. Fedakar
    G. M. Amiraliyev
    Computational Mathematics and Mathematical Physics, 2025, 65 (1) : 25 - 34
  • [28] PERIODIC SOLUTIONS OF A SECOND-ORDER NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION
    Alymbaev, A. T.
    Kyzy, A. Bapa
    Sharshembieva, F. K.
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2024, 31 (02): : 285 - 297
  • [29] A fitted numerical method for a singularly perturbed Fredholm integro-differential equation with discontinuous source term
    Rathore, Ajay Singh
    Shanthi, Vembu
    Ramos, Higinio
    APPLIED NUMERICAL MATHEMATICS, 2023, 185 : 88 - 100
  • [30] Uniform difference method for singularly perturbed Volterra integro-differential equations
    Amiraliyev, G. M.
    Sevgin, Sebaheddin
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 179 (02) : 731 - 741