Trajectory analysis for magnetic particle imaging

被引:139
|
作者
Knopp, T. [1 ]
Biederer, S. [1 ]
Sattel, T. [1 ]
Weizenecker, J. [2 ]
Gleich, B. [2 ]
Borgert, J. [2 ]
Buzug, T. M. [1 ]
机构
[1] Med Univ Lubeck, Inst Med Engn, D-23538 Lubeck, Germany
[2] Sector Med Imaging Syst, Philips Res Europe, Hamburg, Germany
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2009年 / 54卷 / 02期
关键词
D O I
10.1088/0031-9155/54/2/014
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Recently a new imaging technique called magnetic particle imaging was proposed. The method uses the nonlinear response of magnetic nanoparticles when a time varying magnetic field is applied. Spatial encoding is achieved by moving a field-free point through an object of interest while the field strength in the vicinity of the point is high. A resolution in the submillimeter range is provided even for fast data acquisition sequences. In this paper, a simulation study is performed on different trajectories moving the field-free point through the field of view. The purpose is to provide mandatory information for the design of a magnetic particle imaging scanner. Trajectories are compared with respect to density, speed and image quality when applied in data acquisition. Since simulation of the involved physics is a time demanding task, moreover, an efficient implementation is presented utilizing caching techniques.
引用
收藏
页码:385 / 397
页数:13
相关论文
共 50 条
  • [21] Narrowband Magnetic Particle Imaging
    Goodwill, Patrick W.
    Scott, Greig C.
    Stang, Pascal P.
    Conolly, Steven M.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) : 1231 - 1237
  • [22] Parallel magnetic particle imaging
    Vogel, Patrick
    Kampf, Thomas
    Herz, Stefan
    Rueckert, Martin A.
    Bley, Thorsten A.
    Behr, Volker C.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (04):
  • [23] Magnetic Particle Imaging in Neurosurgery
    Meola, Antonio
    Rao, Jianghong
    Chaudhary, Navjot
    Song, Guosheng
    Zheng, Xianchuang
    Chang, Steven D.
    WORLD NEUROSURGERY, 2019, 125 : 261 - 270
  • [24] Multicore Magnetic Nanoparticles for Magnetic Particle Imaging
    Eberbeck, Dietmar
    Dennis, Cindi L.
    Huls, Natalie F.
    Krycka, Kathryn L.
    Gruettner, Cordula
    Westphal, Fritz
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (01) : 269 - 274
  • [25] Optimization of Magnetic Nanoparticles for Magnetic Particle Imaging
    Ludwig, Frank
    Wawrzik, Thilo
    Yoshida, Takashi
    Gehrke, Nicole
    Briel, Andreas
    Eberbeck, Dietmar
    Schilling, Meinhard
    IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (11) : 3780 - 3783
  • [26] Regarding the trajectory of an electricised particle in a magnetic field.
    Birkeland, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1912, 155 : 447 - 450
  • [27] Towards quantitative magnetic particle imaging: A comparison with magnetic particle spectroscopy
    Paysen, Hendrik
    Wells, James
    Kosch, Olaf
    Steinhoff, Uwe
    Trahms, Lutz
    Schaeffter, Tobias
    Wiekhorst, Frank
    AIP ADVANCES, 2018, 8 (05)
  • [28] Magnetic resonance imaging and quantitative analysis of particle deposition in porous media
    Amitay-Rosen, T
    Cortis, A
    Berkowitz, B
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (18) : 7208 - 7216
  • [29] Development of Phantoms for Multimodal Magnetic Resonance Imaging and Magnetic Particle Imaging
    Arenas, Maria Alejandra Ardila
    Gutkelch, Dirk
    Kosch, Olaf
    Bruehl, Ruediger
    Wiekhorst, Frank
    Loewa, Norbert
    POLYMERS, 2022, 14 (19)
  • [30] Particle interactions and their effect on magnetic particle spectroscopy and imaging
    Moor, Lorena
    Scheibler, Subas
    Gerken, Lukas
    Scheffler, Konrad
    Thieben, Florian
    Knopp, Tobias
    Herrmann, Inge K.
    Starsich, Fabian H. L.
    NANOSCALE, 2022, 14 (19) : 7163 - 7173