Trajectory analysis for magnetic particle imaging

被引:139
|
作者
Knopp, T. [1 ]
Biederer, S. [1 ]
Sattel, T. [1 ]
Weizenecker, J. [2 ]
Gleich, B. [2 ]
Borgert, J. [2 ]
Buzug, T. M. [1 ]
机构
[1] Med Univ Lubeck, Inst Med Engn, D-23538 Lubeck, Germany
[2] Sector Med Imaging Syst, Philips Res Europe, Hamburg, Germany
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2009年 / 54卷 / 02期
关键词
D O I
10.1088/0031-9155/54/2/014
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Recently a new imaging technique called magnetic particle imaging was proposed. The method uses the nonlinear response of magnetic nanoparticles when a time varying magnetic field is applied. Spatial encoding is achieved by moving a field-free point through an object of interest while the field strength in the vicinity of the point is high. A resolution in the submillimeter range is provided even for fast data acquisition sequences. In this paper, a simulation study is performed on different trajectories moving the field-free point through the field of view. The purpose is to provide mandatory information for the design of a magnetic particle imaging scanner. Trajectories are compared with respect to density, speed and image quality when applied in data acquisition. Since simulation of the involved physics is a time demanding task, moreover, an efficient implementation is presented utilizing caching techniques.
引用
收藏
页码:385 / 397
页数:13
相关论文
共 50 条
  • [11] Magnetic Particle Imaging
    Buzug, Thorsten M.
    BILDVERARBEITUNG FUR DIE MEDIZIN 2015: ALGORITHMEN - SYSTEME - ANWENDUNGEN, 2015, : 3 - 4
  • [12] Magnetic Particle Imaging
    Behr, Volker
    Jakob, Peter
    ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2015, 25 (01): : 1 - 2
  • [13] Particle Mobility in Magnetic Particle Imaging
    Wawrzik, T.
    Kuhlmann, C.
    Ludwig, F.
    Schilling, M.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2012, 57 : 477 - 477
  • [14] Analysis of viscosity-dependent particle response in the context of Magnetic Particle Imaging
    Wawrzik, T.
    Kuhlmann, C.
    Remmer, H.
    Schilling, M.
    Ludwig, F.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2014, 59 : S622 - S622
  • [15] Design and Analysis of Magnetic Field-Free Line in Magnetic Particle Imaging
    Liu Y.
    Du Q.
    Ke L.
    Zu W.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2020, 35 (10): : 2088 - 2097
  • [16] Magnetic Particle Imaging - from particle science to imaging technology
    Buzug, Thorsten M.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2013, 58 (06): : 489 - 491
  • [17] Imaging and quantification of magnetic nanoparticles: Comparison of magnetic resonance imaging and magnetic particle imaging
    Paysen, Hendrik
    Loewa, Norbert
    Weber, Karol
    Kosch, Olaf
    Wells, James
    Schaeffter, Tobias
    Wiekhorst, Frank
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 475 : 382 - 388
  • [18] Magnetic Particle Imaging: Exploring Particle Mobility
    Wawrzik, Thilo
    Ludwig, Frank
    Schilling, Meinhard
    MAGNETIC PARTICLE IMAGING: A NOVEL SPIO NANOPARTICLE IMAGING TECHNIQUE, 1ST EDITION, 2012, 140 : 21 - 25
  • [19] Magnetic Particle Imaging (MPI)
    Haegele, J.
    Sattel, T.
    Erbe, M.
    Luedtke-Buzug, K.
    Taupitz, M.
    Borgert, J.
    Buzug, T. M.
    Barkhausen, J.
    Vogt, F. M.
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2012, 184 (05): : 420 - 426
  • [20] A Spectrometer for Magnetic Particle Imaging
    Biederer, S.
    Sattel, T.
    Knopp, T.
    Luedtke-Buzug, K.
    Gleich, B.
    Weizenecker, J.
    Borgert, J.
    Buzug, T. M.
    4TH EUROPEAN CONFERENCE OF THE INTERNATIONAL FEDERATION FOR MEDICAL AND BIOLOGICAL ENGINEERING, 2009, 22 (1-3): : 2313 - 2316