Enzyme-catalyzed cationic epoxide rearrangements in quinolone alkaloid biosynthesis

被引:0
|
作者
Zou, Yi [1 ]
Garcia-Borras, Marc [2 ]
Tang, Mancheng C. [1 ]
Hirayama, Yuichiro [3 ]
Li, Dehai H. [4 ]
Li, Li [1 ]
Watanabe, Kenji [3 ]
Houk, K. N. [2 ]
Tang, Yi [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Chem & Biochem, 405 Hilgard Ave, Los Angeles, CA 90024 USA
[3] Univ Shizuoka, Dept Pharmaceut Sci, Shizuoka, Japan
[4] Ocean Univ China, Sch Med & Pharm, Key Lab Marine Drugs, Chinese Minist Educ, Qingdao, Peoples R China
基金
美国国家科学基金会; 日本学术振兴会;
关键词
ANTIBIOTICS; YAEQUINOLONES; CYCLOPROPANE; CONSTRUCTION; MYCORRHIZIN; MECHANISMS; CONVERSION; DISCOVERY;
D O I
10.1038/NCHEMBIO.2283
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Epoxides are highly useful synthons and biosynthons for the construction of complex natural products during total synthesis and biosynthesis, respectively. Among enzyme-catalyzed epoxide transformations, a reaction that is notably missing, in regard to the synthetic toolbox, is cationic rearrangement that takes place under strong acid. This is a challenging transformation for enzyme catalysis, as stabilization of the carbocation intermediate upon epoxide cleavage is required. Here, we discovered two Bronsted acid enzymes that can catalyze two unprecedented epoxide transformations in biology. PenF from the penigequinolone pathway catalyzes a cationic epoxide rearrangement under physiological conditions to generate a quaternary carbon center, while AsqO from the aspoquinolone pathway catalyzes a 3-exo-tet cyclization to forge a cyclopropane-tetrahydrofuran ring system. The discovery of these new epoxide-modifying enzymes further highlights the versatility of epoxides in complexity generation during natural product biosynthesis.
引用
收藏
页码:325 / +
页数:10
相关论文
共 50 条
  • [21] Laboratory-Evolved Enzymes Provide Snapshots of the Development of Enantioconvergence in Enzyme-Catalyzed Epoxide Hydrolysis
    Carlsson, Asa Janfalk
    Bauer, Paul
    Dobritzsch, Doreen
    Nilsson, Mikael
    Kamerlin, S. C. Lynn
    Widersten, Mikael
    CHEMBIOCHEM, 2016, 17 (18) : 1693 - 1697
  • [22] Enzyme-catalyzed reactions of polysaccharides
    Cheng, HN
    Gu, QM
    BIOCATALYSIS IN POLYMER SCIENCE, 2003, 840 : 203 - 216
  • [23] Enzyme-Catalyzed Transetherification of Alkoxysilanes
    Abbate, Vincenzo
    Brandstadt, Kurt F.
    Taylor, Peter G.
    Bassindale, Alan R.
    CATALYSTS, 2013, 3 (01): : 27 - 35
  • [24] ENZYME-CATALYZED SYNTHESIS OF CARBOHYDRATES
    TOONE, EJ
    SIMON, ES
    BEDNARSKI, MD
    WHITESIDES, GM
    TETRAHEDRON, 1989, 45 (17) : 5365 - 5422
  • [25] ENZYME-CATALYZED SYNTHESIS OF CARBOHYDRATES
    WONG, CH
    DRUECKHAMMER, DG
    DURRWACHTER, JR
    LACHER, B
    CHAUVET, CJ
    WANG, YF
    SWEERS, HM
    SMITH, GL
    YANG, LJS
    HENNEN, WJ
    ACS SYMPOSIUM SERIES, 1989, 386 : 317 - 335
  • [26] Enzyme-catalyzed hydrolysis of γ-oryzanol
    Miller, A
    Majauskaite, L
    Engel, KH
    EUROPEAN FOOD RESEARCH AND TECHNOLOGY, 2004, 218 (04) : 349 - 354
  • [27] Enzyme-catalyzed protein crosslinking
    Heck, Tobias
    Faccio, Greta
    Richter, Michael
    Thoeny-Meyer, Linda
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2013, 97 (02) : 461 - 475
  • [28] Enzyme-catalyzed carboxylic peracids
    Rusch, M
    CHEMTECH, 1996, 26 (12) : 2 - 2
  • [29] Enzyme-catalyzed synthesis of carbohydrates
    Wymer, N
    Toone, EJ
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2000, 4 (01) : 110 - 119
  • [30] Enzyme-catalyzed direct polyesterification
    Brandstadt, KF
    Saam, JC
    Sharma, A
    BIOCATALYSIS IN POLYMER SCIENCE, 2003, 840 : 141 - 155