SPOT-Peptide: Template-Based Prediction of Peptide-Binding Proteins and Peptide-Binding Sites

被引:15
|
作者
Litfin, Thomas [1 ]
Yang, Yuedong [2 ]
Zhou, Yaoqi [1 ,3 ]
机构
[1] Griffith Univ, Sch Informat & Commun Technol, Southport, Qld 4222, Australia
[2] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
[3] Griffith Univ, Inst Glyc, Southport, Qld 4222, Australia
基金
英国医学研究理事会; 中国国家自然科学基金; 澳大利亚研究理事会;
关键词
HUMAN-DISEASE; MEAN FORCE; LIGAND; DATABASE; SEQUENCE; DOCKING; SIMILARITY; ALIGNMENT; SURFACES; COFACTOR;
D O I
10.1021/acs.jcim.8b00777
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Peptide-binding domains have been successfully targeted in therapeutic applications. However, many peptide-binding proteins (PBPs) remain uncharacterized. Computational prediction of peptide-domain interfaces is challenging due to short lengths, lack of well-defined structures, and limited conservation of peptide motifs. Here we present SPOT-peptide, a template-based protocol for the simultaneous prediction of peptide-binding domains and peptide binding sites independent of specific peptide composition. SPOT-peptide leverages the dogmatic relationship between protein structure and function to predict peptide-binding characteristics for an unknown target based on remote structural homologues. In a leave-homologue out benchmark evaluation, PBPs are discriminated with a Matthews correlation coefficient (MCC) of 0.420 and the correct binding sites are identified in 80% of the predicted PBPs. Furthermore, replacing the holo target structures with equivalent structures in the apo conformation only marginally diminished PBP recovery. The method is available as a web server at http://sparks-lab.org/tom/SPOT-peptide.
引用
收藏
页码:924 / 930
页数:7
相关论文
共 50 条
  • [21] Peptide-Binding Nanoparticle Materials with Tailored Recognition Sites for Basic Peptides
    Fa, Shixin
    Zhao, Yan
    [J]. CHEMISTRY OF MATERIALS, 2017, 29 (21) : 9284 - 9291
  • [22] HLA Class II peptide-binding and autoimmunity
    Gebe, JA
    Swanson, E
    Kwok, WW
    [J]. TISSUE ANTIGENS, 2002, 59 (02): : 78 - 87
  • [23] A tweezer-like peptide-binding receptor
    Jung, JE
    Yoon, SS
    [J]. BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2003, 24 (10) : 1525 - 1526
  • [24] Peptide-Binding Domains: Are Limp Handshakes Safest?
    Haslam, Niall J.
    Shields, Denis C.
    [J]. SCIENCE SIGNALING, 2012, 5 (243)
  • [25] RELATIONSHIPS BETWEEN HORMONE-BINDING AND PEPTIDE-BINDING TO NEUROPHYSIN
    BRESLOW, E
    WEIS, J
    MENENDEZ.CJ
    LUNDT, S
    [J]. FEDERATION PROCEEDINGS, 1973, 32 (03) : 539 - &
  • [26] A Peptide-binding Receptor Based on Resorc[4]arene and Peptide-Metal Complexes
    Kang, Hyung Kyu
    Lim, Hyo Jeong
    Yoon, Seung Soo
    [J]. BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2010, 31 (01): : 202 - 204
  • [27] MURAMYL PEPTIDE-BINDING SITES ARE LOCATED INSIDE TARGET-CELLS
    SUMAROKA, MV
    LITVINOV, IS
    KHAIDUKOV, SV
    GOLOVINA, TN
    KAMRAZ, MV
    KOMALEVA, RL
    ANDRONOVA, TM
    MAKAROV, EA
    NESMEYANOV, VA
    IVANOV, VT
    [J]. FEBS LETTERS, 1991, 295 (1-3) : 48 - 50
  • [28] De novo design of modular peptide-binding proteins by superhelical matching
    Kejia Wu
    Hua Bai
    Ya-Ting Chang
    Rachel Redler
    Kerrie E. McNally
    William Sheffler
    T. J. Brunette
    Derrick R. Hicks
    Tomos E. Morgan
    Tim J. Stevens
    Adam Broerman
    Inna Goreshnik
    Michelle DeWitt
    Cameron M. Chow
    Yihang Shen
    Lance Stewart
    Emmanuel Derivery
    Daniel Adriano Silva
    Gira Bhabha
    Damian C. Ekiert
    David Baker
    [J]. Nature, 2023, 616 : 581 - 589
  • [29] Structural diversity in twin-arginine signal peptide-binding proteins
    Maillard, Julien
    Spronk, Chris A. E. M.
    Buchanan, Grant
    Lyall, Verity
    Richardson, David J.
    Palmer, Tracy
    Vuister, Geerten W.
    Sargent, Frank
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (40) : 15641 - 15646
  • [30] De novo design of modular peptide-binding proteins by superhelical matching
    Wu, Kejia
    Bai, Hua
    Chang, Ya-Ting
    Redler, Rachel
    McNally, Kerrie E.
    Sheffler, William
    Brunette, T. J.
    Hicks, Derrick R.
    Morgan, Tomos E.
    Stevens, Tim J.
    Broerman, Adam
    Goreshnik, Inna
    DeWitt, Michelle
    Chow, Cameron M.
    Shen, Yihang
    Stewart, Lance
    Derivery, Emmanuel
    Silva, Daniel Adriano
    Bhabha, Gira
    Ekiert, Damian C.
    Baker, David
    [J]. NATURE, 2023, 616 (7957) : 581 - +