Perfecting the nearly perfect

被引:0
|
作者
Burns, David [1 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a natural variant of the notion of nearly perfect complex. We show that this variant gives rise to canonical perfect complexes and prove several useful properties of this construction (including additivity of the associated Euler characteristics oil suitable exact triangles). We then apply this approach to complexes arising from the etale cohomology of G(m) on arithmetic surfaces and discuss links to Lichtenbaum's theory of cohomology.
引用
收藏
页码:1041 / 1058
页数:18
相关论文
共 50 条
  • [21] Selection by a nearly perfect examination
    Sandon, F
    ANNALS OF EUGENICS, 1936, 7 : 65 - 85
  • [22] NEARLY PERFECT SETS IN GRAPHS
    DUNBAR, JE
    HARRIS, FC
    HEDETNIEMI, SM
    HEDETNIEMI, ST
    MCRAE, AA
    LASKAR, RC
    DISCRETE MATHEMATICS, 1995, 138 (1-3) : 229 - 246
  • [23] Perfect and nearly perfect sampling of work-conserving queues
    Xiong, Yaofei
    Murdoch, Duncan J.
    Stanford, David A.
    QUEUEING SYSTEMS, 2015, 80 (03) : 197 - 222
  • [24] Perfect and nearly perfect sampling of work-conserving queues
    Yaofei Xiong
    Duncan J. Murdoch
    David A. Stanford
    Queueing Systems, 2015, 80 : 197 - 222
  • [25] Perfect and nearly perfect separation dimension of complete and random graphs
    Yuster, Raphael
    JOURNAL OF COMBINATORIAL DESIGNS, 2021, 29 (11) : 786 - 805
  • [26] VACANCY SOURCE IN NEARLY PERFECT CRYSTALS
    KINO, T
    MIZUNO, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1984, 53 (10) : 3290 - 3292
  • [27] Proper Nearly Perfect Sets in Graphs
    Eslahchi, Ch.
    Maimani, H. R.
    Torabi, R.
    Tusserkani, R.
    ARS COMBINATORIA, 2016, 126 : 143 - 156
  • [28] SURVEY OF IMPERFECTIONS IN NEARLY PERFECT CRYSTALS
    SEITZ, F
    JOURNAL OF PHYSICAL CHEMISTRY, 1953, 57 (08): : 737 - 738
  • [29] Nearly perfect quark–gluon fluid
    Kari J. Eskola
    Nature Physics, 2019, 15 : 1111 - 1112
  • [30] ALL NEARLY PERFECT CODES ARE KNOWN
    LINDSTROM, K
    INFORMATION AND CONTROL, 1977, 35 (01): : 40 - 47