In a graph G = (V, E), a set of vertices S is nearly perfect if every vertex in V - S is adjacent to at most one vertex in S. Nearly perfect sets are closely related to 2-packings of graphs, strongly stable sets, dominating sets and efficient dominating sets. We say a neraly perfect set S is 1-minimal if for every vertex u in S, the set S - {u} is not nearly perfect. Similarly, a nearly perfect set S is 1-maximal if for every vertex u in V - S, S boolean OR {u} is not a nearly perfect set. Lastly, we define np(G) to be the minimum cardinality of a 1-maximal nearly perfect set, and N-p(G) to be the maximum cardinality of a 1-minimal neraly perfect set. In this paper we calculate these parameters for some classes of graphs. We show that the decision problem for n(p)(G) is NP-complete; we give a linear algorithm for determining n(p)(T) for any tree T; and we show that N-p(G) can be calculated for any graph G in polynomial time.
机构:
Hungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, HungaryHungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
Gyarfas, Andras
Li, Zhentao
论文数: 0引用数: 0
h-index: 0
机构:
Ecole Normale Super Lyon, LIP, F-69342 Lyon 07, FranceHungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
Li, Zhentao
Machado, Raphael
论文数: 0引用数: 0
h-index: 0
机构:
Inmetro, Rio De Janeiro, BrazilHungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
Machado, Raphael
Sebo, Andras
论文数: 0引用数: 0
h-index: 0
机构:
Grenoble INP, CNRS, UJF, Lab G SCOP,Equipe Optimisat Combinatoire, F-38031 Grenoble, FranceHungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
Sebo, Andras
Thomasse, Stephan
论文数: 0引用数: 0
h-index: 0
机构:
Ecole Normale Super Lyon, LIP, F-69342 Lyon 07, FranceHungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
Thomasse, Stephan
Trotignon, Nicolas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lyon, Ecole Normale Super Lyon, CNRS, LIP,INRIA,UCBL, F-69342 Lyon 07, FranceHungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
机构:
Slovak Univ Technol Bratislava, Bratislava, SlovakiaOpen Univ, Milton Keynes MK7 6AA, Bucks, England
Fratric, Peter
Siran, Jozef
论文数: 0引用数: 0
h-index: 0
机构:
Open Univ, Milton Keynes MK7 6AA, Bucks, England
Slovak Univ Technol Bratislava, Bratislava, SlovakiaOpen Univ, Milton Keynes MK7 6AA, Bucks, England
Siran, Jozef
AUSTRALASIAN JOURNAL OF COMBINATORICS,
2021,
80
: 48
-
56