Some results on q-harmonic number sums

被引:1
|
作者
Si, Xin [1 ]
机构
[1] Xiamen Univ Technol, Sch Appl Math, Xiamen, Peoples R China
关键词
q-harmonic number; q-binomial coefficient; q-polylogarithm function; Q-ZETA FUNCTIONS; EULER SUMS; INTEGRAL-REPRESENTATIONS; Q-ANALOGS; IDENTITIES; POLYNOMIALS; VALUES; SERIES;
D O I
10.1186/s13662-018-1480-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish some relations involving q-Euler type sums, q-harmonic numbers and q-polylogarithms. Then, using the relations obtained with the help of q-analog of partial fraction decomposition formula, we develop new closed form representations of sums of q-harmonic numbers and reciprocal q-binomial coefficients. Moreover, we give explicit formulas for several classes of q-harmonic sums in terms of q-polylogarithms and q-harmonic numbers. The given representations are new.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Remarks on linear independence of q-harmonic series
    P. Bundschuh
    Journal of Mathematical Sciences, 2012, 180 (5) : 550 - 555
  • [22] THE Q-HARMONIC OSCILLATOR AND AN ANALOG OF THE CHARLIER POLYNOMIALS
    ASKEY, R
    SUSLOV, SK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (15): : L693 - L698
  • [23] Congruences with q-harmonic numbers and q-binomial coefficients
    Elkhiri, Laid
    Koparal, Sibel
    Omur, Nese
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (02): : 639 - 648
  • [24] Gradient estimates for harmonic and q-harmonic functions of symmetric stable processes
    Bogdan, K
    Kulczycki, T
    Nowak, A
    ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (02) : 541 - 556
  • [25] Determinant expressions for q-harmonic congruences and degenerate Bernoulli numbers
    Dilcher, Karl
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [26] Congruences with q-generalized Catalan numbers and q-harmonic numbers
    Omur, Nese
    Gur, Zehra Betul
    Koparal, Sibel
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (03): : 712 - 724
  • [27] Quadratic Harmonic Number Sums
    Sofo, Anthony
    Hassani, Mehdi
    APPLIED MATHEMATICS E-NOTES, 2012, 12 : 110 - 117
  • [28] On generalized harmonic number sums
    Coffey, Mark W.
    Lubbers, Nicholas
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (02) : 689 - 698
  • [29] The q-Laplace operator and q-harmonic polynomials on the quantum vector space
    Iorgov, NZ
    Klimyk, AU
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (03) : 1326 - 1345
  • [30] q-HARMONIC SUM IDENTITIES WITH MULTI-BINOMIAL COEFFICIENT
    Yan, Qinglun
    Fan, Xiaona
    ARS COMBINATORIA, 2015, 120 : 213 - 221