The q-Laplace operator and q-harmonic polynomials on the quantum vector space

被引:9
|
作者
Iorgov, NZ [1 ]
Klimyk, AU [1 ]
机构
[1] Ukrainian Acad Sci, Inst Theoret Phys, UA-03143 Kiev, Ukraine
关键词
D O I
10.1063/1.1343092
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The aim of this paper is to study q-harmonic polynomials on the quantum vector space generated by q-commuting elements x(1),x(2),...,x(n). They are defined as solutions of the equation Delta (q)p=0, where p is a polynomial in x(1),x(2),...,x(n) and the q-Laplace operator Delta (q) is determined in terms of q-derivatives. The projector H-m:A(m)-->H-m is constructed, where A(m) and H-m are the spaces of homogeneous (of degree m) polynomials and q-harmonic polynomials, respectively. By using these projectors, a q-analog of classical associated spherical harmonics is constructed. They constitute an orthonormal basis of H-m. A q-analog of separation of variables is given. Representations of the nonstandard q-deformed algebra U-q'(so(n)) [which plays the role of the rotation group SO(n) in the case of classical harmonic polynomials] on the spaces H-m are explicitly constructed. (C) 2001 American Institute of Physics.
引用
收藏
页码:1326 / 1345
页数:20
相关论文
共 50 条
  • [1] On q-Laplace operator and q-harmonic polynomials
    N. Z. Iorgov
    A. U. Klimyk
    Physics of Atomic Nuclei, 2001, 64 : 2131 - 2135
  • [2] On q-Laplace operator and q-harmonic polynomials
    Iorgov, NZ
    Klimyk, AU
    PHYSICS OF ATOMIC NUCLEI, 2001, 64 (12) : 2131 - 2135
  • [3] q-LAPLACE TRANSFORM ON QUANTUM INTEGRAL
    Alp, Necmettin
    Sarikaya, Mehmet Zeki
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2023, 47 (01): : 153 - 164
  • [4] EIGENVALUE PROBLEM FOR ODES WITH A PERTURBED Q-LAPLACE OPERATOR
    O'Regan, Donal
    Orpel, Aleksandra
    DYNAMIC SYSTEMS AND APPLICATIONS, 2015, 24 (1-2): : 97 - 111
  • [5] THE Q-HARMONIC OSCILLATOR AND AN ANALOG OF THE CHARLIER POLYNOMIALS
    ASKEY, R
    SUSLOV, SK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (15): : L693 - L698
  • [6] Eigenvalue Problem for a System of Singular ODEs with a Perturbed q-Laplace operator
    O'Regan, Donal
    Orpel, Aleksandra
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (03): : 691 - 701
  • [7] The h-Laplace and q-Laplace transforms
    Bohner, Martin
    Guseinov, Gusein Sh.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (01) : 75 - 92
  • [8] SOME COMBINATORIAL IDENTITIES INVOLVING q-HARMONIC NUMBERS AND GENERALIZED q-HARMONIC NUMBERS
    Komatsu, Takao
    Ramirez, Jose L.
    Sirvent, Victor F.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (05) : 847 - 858
  • [9] THE Q-HARMONIC OSCILLATOR AND THE AL-SALAM AND CARLITZ POLYNOMIALS
    ASKEY, R
    SUSLOV, SK
    LETTERS IN MATHEMATICAL PHYSICS, 1993, 29 (02) : 123 - 132
  • [10] IDENTITY ON q-HARMONIC NUMBER RELATED TO PARTIAL BELL POLYNOMIALS
    Yan, Qinglun
    Liu, Yaqing
    Fan, Xiaona
    UTILITAS MATHEMATICA, 2016, 100 : 193 - 200