A sharp upper bound on the signless Laplacian spectral radius of graphs

被引:11
|
作者
Cui, Shu-Yu [1 ]
Tian, Gui-Xian [2 ]
Guo, Jing-Jing [2 ]
机构
[1] Zhejiang Normal Univ, Xingzhi Coll, Jinhua 321004, Zhejiang, Peoples R China
[2] Zhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph; Signless Laplacian matrix; Spectral radius; Upper bound;
D O I
10.1016/j.laa.2013.06.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple connected graph of order n with degree sequence d(1), d(2), ... , d(n) in non-increasing order. The signless Laplacian spectral radius rho(Q(G)) of G is the largest eigenvalue of its signless Laplacian matrix Q (G). In this paper, we give a sharp upper bound on the signless Laplacian spectral radius rho(Q(G)) in terms of d(i), which improves and generalizes some known results. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:2442 / 2447
页数:6
相关论文
共 50 条
  • [31] MAXIMA OF THE SIGNLESS LAPLACIAN SPECTRAL RADIUS FOR PLANAR GRAPHS
    Yu, Guanglong
    Wang, Jianyong
    Guo, Shu-Guang
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 30 : 795 - 811
  • [32] On the signless Laplacian spectral radius of graphs with cut vertices
    Zhu, Bao-Xuan
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (05) : 928 - 933
  • [33] On the maximum signless Laplacian spectral radius of bipartite graphs
    Niu, Aihong
    Fan, Dandan
    Wang, Guoping
    [J]. ARS COMBINATORIA, 2018, 140 : 389 - 395
  • [34] The signless Laplacian spectral radius of graphs with given diameter
    Feng LiHua
    Yu GuiHai
    [J]. UTILITAS MATHEMATICA, 2010, 83 : 265 - 276
  • [35] ON THE DISTANCE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS AND DIGRAPHS
    Li, Dan
    Wang, Guoping
    Meng, Jixiang
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2017, 32 : 438 - 446
  • [36] ON THE HARMONIC INDEX AND THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS
    Deng, Hanyuan
    Vetrik, Tomas
    Balachandran, Selvaraj
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (02): : 299 - 307
  • [37] CHROMATIC NUMBER AND SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS
    Oboudi, Mohammad Reza
    [J]. TRANSACTIONS ON COMBINATORICS, 2022, 11 (04) : 327 - 334
  • [38] Signless Laplacian spectral radius and fractional matchings in graphs
    Pan, Yingui
    Li, Jianping
    Zhao, Wei
    [J]. DISCRETE MATHEMATICS, 2020, 343 (10)
  • [39] Quotient of spectral radius, (signless) Laplacian spectral radius and clique number of graphs
    Das, Kinkar Ch.
    Liu, Muhuo
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (03) : 1039 - 1048
  • [40] Quotient of spectral radius, (signless) Laplacian spectral radius and clique number of graphs
    Kinkar Ch. Das
    Muhuo Liu
    [J]. Czechoslovak Mathematical Journal, 2016, 66 : 1039 - 1048