A sharp upper bound on the signless Laplacian spectral radius of graphs

被引:11
|
作者
Cui, Shu-Yu [1 ]
Tian, Gui-Xian [2 ]
Guo, Jing-Jing [2 ]
机构
[1] Zhejiang Normal Univ, Xingzhi Coll, Jinhua 321004, Zhejiang, Peoples R China
[2] Zhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph; Signless Laplacian matrix; Spectral radius; Upper bound;
D O I
10.1016/j.laa.2013.06.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple connected graph of order n with degree sequence d(1), d(2), ... , d(n) in non-increasing order. The signless Laplacian spectral radius rho(Q(G)) of G is the largest eigenvalue of its signless Laplacian matrix Q (G). In this paper, we give a sharp upper bound on the signless Laplacian spectral radius rho(Q(G)) in terms of d(i), which improves and generalizes some known results. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:2442 / 2447
页数:6
相关论文
共 50 条
  • [21] A sharp upper bound on the spectral radius of weighted graphs
    Das, Kinkar Ch.
    Bapat, R. B.
    [J]. DISCRETE MATHEMATICS, 2008, 308 (15) : 3180 - 3186
  • [22] On the distance signless Laplacian spectral radius and the distance signless Laplacian energy of graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Paul, Somnath
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (03)
  • [23] Sharp bounds for the signless Laplacian spectral radius of digraphs
    Lang, Weiwei
    Wang, Ligong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 : 43 - 49
  • [24] SHARP UPPER BOUNDS ON THE SPECTRAL RADIUS OF THE LAPLACIAN MATRIX OF GRAPHS
    Das, K. Ch.
    [J]. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2005, 74 (02): : 185 - 198
  • [25] Sharp bounds on the signless Laplacian spectral radii of graphs
    Yu, Guanglong
    Wu, Yarong
    Shu, Jinlong
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (03) : 683 - 687
  • [26] The signless Laplacian spectral radius of graphs without trees
    Chen, Ming-Zhu
    Li, Zhao-Ming
    Zhang, Xiao-Dong
    [J]. arXiv, 2022,
  • [27] Spanning trees and signless Laplacian spectral radius in graphs
    Wang, Sufang
    Zhang, Wei
    [J]. arXiv,
  • [28] The Randic index and signless Laplacian spectral radius of graphs
    Ning, Bo
    Peng, Xing
    [J]. DISCRETE MATHEMATICS, 2019, 342 (03) : 643 - 653
  • [29] The signless Laplacian spectral radius of graphs with no intersecting triangles
    Zhao, Yanhua
    Huang, Xueyi
    Guo, Hangtian
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 618 : 12 - 21
  • [30] On the Distance Signless Laplacian Spectral Radius of Bicyclic Graphs
    Nannan XU
    Aimei YU
    [J]. Journal of Mathematical Research with Applications, 2023, 43 (03) : 289 - 302