Non-Binary LDPC Codes vs. Reed-Solomon Codes

被引:0
|
作者
Zhou, Bo [1 ]
Zhang, Li [1 ]
Kang, Jingyu [1 ]
Huang, Qin [1 ]
Tai, Ying Y. [1 ]
Lin, Shu [1 ]
Xu, Meina [2 ]
机构
[1] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA
[2] Northrop Grumman Space Technol, Redondo Beach, CA USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the potential of non-binary LDPC codes to replace widely used Reed-Solomon (RS) codes for applications in communication and storage systems for combating mixed types of noise and interferences. The investigation begins with presentation of four algebraic constructions of RS-based non-binary quasi-cyclic (QC)-LDPC codes. Then, the performances of some codes constructed based on the proposed methods with iterative decoding are compared with those of RS codes of the same lengths and rates decoded with the hard-decision Berlekamp-Massey (BM)-algorithm and the algebraic soft-decision Kotter-Vardy (KV)-algorithm over both the AWGN and a Rayleigh fading channels. Comparison shows that the constructed non-binary QC-LDPC codes significantly outperform their corresponding RS codes decoded with either the BM-algorithm or the KV-algorithm. Most impressively, the orders of decoding computational complexity of the constructed non-binary QC-LDPC codes decoded with 5 and 50 iterations of a Fast Fourier Transform based sum-product algorithm are much smaller than those of their corresponding RS codes decoded with the KV-algorithm, while achieve 1.5 to 3 dB coding gains. The comparison shows that well designed non-binary LDPC codes have a great potential to replace RS codes for some applications in communication or storage systems, at least before a very efficient algorithm for decoding RS codes is devised.
引用
下载
收藏
页码:211 / +
页数:2
相关论文
共 50 条
  • [21] Split non-binary LDPC codes
    Voicila, Adrian
    Declercq, David
    Verdier, Francois
    Fossorier, Marc
    Urard, Pascal
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 955 - 959
  • [22] Reed-Solomon convolutional codes
    Gluesing-Luerssen, H
    Schmale, W
    2005 IEEE International Symposium on Information Theory (ISIT), Vols 1 and 2, 2005, : 676 - 679
  • [23] DECODING OF REED-SOLOMON CODES
    MANDELBAUM, D
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1971, 17 (06) : 707 - +
  • [24] Repairing Reed-Solomon Codes
    Guruswami, Venkatesan
    Wootters, Mary
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (09) : 5684 - 5698
  • [25] Asymmetric quantum Reed-Solomon and generalized Reed-Solomon codes
    La Guardia, Giuliano G.
    QUANTUM INFORMATION PROCESSING, 2012, 11 (02) : 591 - 604
  • [26] Twisted Reed-Solomon Codes
    Beelen, Peter
    Puchinger, Sven
    Rosenkilde, Johan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (05) : 3047 - 3061
  • [27] Asymmetric quantum Reed-Solomon and generalized Reed-Solomon codes
    Giuliano G. La Guardia
    Quantum Information Processing, 2012, 11 : 591 - 604
  • [28] Quantum Reed-Solomon codes
    Grassl, M
    Geiselmann, W
    Beth, T
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 1999, 1719 : 231 - 244
  • [29] Twisted Reed-Solomon Codes
    Beelen, Peter
    Puchinger, Sven
    Nielsen, Johan Rosenkilde Ne
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 336 - 340
  • [30] New explicit binary constant weight codes from Reed-Solomon codes
    Xu, Liqing
    Chen, Hao
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 46 : 57 - 64