Periodontal Disease Detection Using Convolutional Neural Networks

被引:0
|
作者
Joo, Jaehan [1 ]
Jeong, Sinjin [1 ]
Jin, Heetae [1 ]
Lee, Uhyeon [1 ]
Yoon, Ji Young [2 ]
Kim, Suk Chan [1 ]
机构
[1] Pusan Natl Univ, Dept Elect & Comp Engn, Busan, South Korea
[2] Pusan Natl Univ, Dept Anesthesia & Pain Med, Busan, South Korea
基金
新加坡国家研究基金会;
关键词
Convolutional neural network; periodontal disease; periodontitis;
D O I
10.1109/icaiic.2019.8669021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a classification method of periodontal disease based on CNN. The data to used were the actual periodontal images and non-periodontal images. Data processing techniques such as resize, crop and zero-centralizing are used to improve data learning efficiency. The CNN Structure proposed in this paper has 224 x 224 x 3 size image as input data and 4 outputs according to periodontal state. We also use momentum optimization technique for neural network optimization.
引用
收藏
页码:360 / 362
页数:3
相关论文
共 50 条
  • [22] Stroke Lesion Detection Using Convolutional Neural Networks
    Pereira, Danillo Roberto
    Reboucas Filho, Pedro P.
    de Rosa, Gustavo Henrique
    Papa, Joao Paulo
    de Albuquerque, Victor Hugo C.
    [J]. 2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [23] Android Botnet Detection using Convolutional Neural Networks
    Hojjatinia, Sina
    Hamzenejadi, Sajad
    Mohseni, Hadis
    [J]. 2020 28TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2020, : 674 - 679
  • [24] Microaneurysm detection using fully convolutional neural networks
    Chudzik, Piotr
    Majumdar, Somshubra
    Caliva, Francesco
    Al-Diri, Bashir
    Hunter, Andrew
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 158 : 185 - 192
  • [25] Fall detection using mixtures of convolutional neural networks
    Thao V. Ha
    Hoang M. Nguyen
    Son H. Thanh
    Binh T. Nguyen
    [J]. Multimedia Tools and Applications, 2024, 83 : 18091 - 18118
  • [26] QR Code Detection Using Convolutional Neural Networks
    Chou, Tzu-Han
    Ho, Chuan-Sheng
    Kuo, Yan-Fu
    [J]. 2015 INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND INTELLIGENT SYSTEMS (ARIS), 2015,
  • [27] Detection of Cattle Using Drones and Convolutional Neural Networks
    Rivas, Alberto
    Chamoso, Pablo
    Gonzalez-Briones, Alfonso
    Manuel Corchado, Juan
    [J]. SENSORS, 2018, 18 (07)
  • [28] Fingerprint Liveness Detection Using Convolutional Neural Networks
    Nogueira, Rodrigo Frassetto
    Lotufo, Roberto de Alencar
    Machado, Rubens Campos
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2016, 11 (06) : 1206 - 1213
  • [29] Melanoma Detection Using Regular Convolutional Neural Networks
    Abu Ali, Aya
    Al-Marzouqi, Hasan
    [J]. 2017 INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTING TECHNOLOGIES AND APPLICATIONS (ICECTA), 2017, : 363 - 367
  • [30] A Method for Deepfake Detection Using Convolutional Neural Networks
    Volkova, S. S.
    [J]. SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING, 2023, 50 (05) : 475 - 485