Gate-stack analysis for 45-nm CMOS devices from an RF perspective

被引:5
|
作者
Nuttinck, S [1 ]
Curatola, G [1 ]
Widdershoven, F [1 ]
机构
[1] Philips Res Leuven, B-3001 Heverlee, Belgium
关键词
CMOS; contact resistance; gate stack; noise; RF; 45; nm;
D O I
10.1109/TED.2006.870878
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Three gate stacks for the 45-nm node are analyzed from an RF perspective. The authors present an expression of the gate resistance valid for all three stacks, quantify the differences each stack has on several small-signal RF figures-of-merit and on the RF noise parameters, and demonstrate that devices with fully silicided gates will enable ultralow-power/low-noise RF applications, while the performance of transistors using multilayer gate stacks are limited by large contact resistance. Although offering better bandwidth and noise characteristics than the poly/silicide stack, the deposited metal stack will lose its advantage in devices requiring higher gate work functions than in planar bulk CMOS transistors.
引用
收藏
页码:925 / 929
页数:5
相关论文
共 50 条
  • [31] Optimization of gate-stack in junctionless Si-nanotube FET for analog/RF applications
    Tayal, Shubham
    Nandi, Ashutosh
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2018, 80 : 63 - 67
  • [32] Template Attacks Based on Static Power Analysis of Block Ciphers in 45-nm CMOS Environment
    Xu, Jiming
    Heys, Howard M.
    2017 IEEE 60TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2017, : 1256 - 1259
  • [33] A functional 41-stage ring oscillator using scaled FinFET devices with 25-nm gate lengths and 10-nm fin widths applicable for the 45-nm CMOS node
    Collaert, N
    Dixit, A
    Goodwin, M
    Anil, KG
    Rooyackers, R
    Degroote, B
    Leunissen, LHA
    Veloso, A
    Jonckheere, R
    De Meyer, K
    Jurczak, M
    Biesemans, S
    IEEE ELECTRON DEVICE LETTERS, 2004, 25 (08) : 568 - 570
  • [34] 45-nm CMOS for next-gen 60-GHz wireless
    Wambacq, Piet
    Craninckx, Jan
    Electronic Products (Garden City, New York), 2010, 52 (02):
  • [35] A 45-nm SOI CMOS Integrate-and-Dump Optical Sampling Receiver
    Gathman, Timothy D.
    Buckwalter, James F.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2013, 60 (02) : 469 - 478
  • [36] 45-nm CMOS SOI Technology Characterization for Millimeter-Wave Applications
    Inac, Ozgur
    Uzunkol, Mehmet
    Rebeiz, Gabriel M.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2014, 62 (06) : 1301 - 1311
  • [37] RF Power Potential of 45 nm CMOS Technology
    Gogineni, Usha
    del Alamo, Jesus A.
    Putnam, Christopher
    2010 TOPICAL MEETING ON SILICON MONOLITHIC INTEGRATED CIRCUITS IN RF SYSTEMS, 2010, : 204 - +
  • [38] An 18-dBm, 57 to 85-GHz, 4-stack FET Power Amplifier in 45-nm SOI CMOS
    Ning, Kang
    Buckwalter, James F.
    2018 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM - IMS, 2018, : 1453 - 1456
  • [39] Conventional vs. junctionless gate-stack DG-MOSFET based CMOS inverter
    Tayal, Shubham
    Samrat, Pachimatla
    Keerthi, Vadula
    Jena, Biswajit
    Rajendra, Karthik
    INTERNATIONAL JOURNAL OF NANO DIMENSION, 2021, 12 (02) : 98 - 103
  • [40] Layout Dependence Modeling for 45-nm CMOS With Stress-Enhanced Technique
    Morifuji, Eiji
    Aikawa, Hisashi
    Yoshimura, Hisao
    Sakata, Akio
    Ohta, Masako
    Iwai, Masaaki
    Matsuoka, Fumitomo
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2009, 56 (09) : 1991 - 1998