Stock of banks and credit institutions;
Mixture model;
Clustering time series;
Multivariate skew normal;
GAS model;
MAXIMUM-LIKELIHOOD;
D O I:
10.2991/jsta.d.200827.001
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
This paper proposes a flexible finite mixture model framework using multivariate skew normal distribution for banking and credit institutions' stock data in Iran. This method clusters time series stocks data of Iranian banks and credit institutions to filter those data into four groups. The proposed model estimates matrices of time-varying parameter for skew normal distribution mixture using EM algorithm, updating the estimated parameters via generalized autoregressive score (GAS) model. Empirical studies are conducted to examine the effect of the proposed model in clustering, estimating, and updating parameters for real data from 12 sets of stocks. Our stock data were filtered in four trade clusters with best performance. (c) 2020 The Authors. Published by Atlantis Press B.V.
机构:
Univ Lisbon, Fac Ciencias, CEAUL, Lisbon, PortugalUniv Lisbon, Fac Ciencias, CEAUL, Lisbon, Portugal
Domingues, Tiago Dias
Mourino, Helena
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, Fac Ciencias, CMAFcIO, Lisbon, PortugalUniv Lisbon, Fac Ciencias, CEAUL, Lisbon, Portugal
Mourino, Helena
Sepulveda, Nuno
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, Fac Ciencias, CEAUL, Lisbon, Portugal
Warsaw Univ Technol, Fac Math & Informat Sci, Warsaw, PolandUniv Lisbon, Fac Ciencias, CEAUL, Lisbon, Portugal