Analysis of Antibody Data Using Skew-Normal and Skew-t Mixture Models
被引:1
|
作者:
Domingues, Tiago Dias
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, Fac Ciencias, CEAUL, Lisbon, PortugalUniv Lisbon, Fac Ciencias, CEAUL, Lisbon, Portugal
Domingues, Tiago Dias
[1
]
Mourino, Helena
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, Fac Ciencias, CMAFcIO, Lisbon, PortugalUniv Lisbon, Fac Ciencias, CEAUL, Lisbon, Portugal
Mourino, Helena
[2
]
Sepulveda, Nuno
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, Fac Ciencias, CEAUL, Lisbon, Portugal
Warsaw Univ Technol, Fac Math & Informat Sci, Warsaw, PolandUniv Lisbon, Fac Ciencias, CEAUL, Lisbon, Portugal
Sepulveda, Nuno
[1
,3
]
机构:
[1] Univ Lisbon, Fac Ciencias, CEAUL, Lisbon, Portugal
[2] Univ Lisbon, Fac Ciencias, CMAFcIO, Lisbon, Portugal
[3] Warsaw Univ Technol, Fac Math & Informat Sci, Warsaw, Poland
Gaussian mixture models, which assume a Normal distribution for each component, are popular in antibody (or serological) data analysis to help determining antibody-positive and antibody- negative individuals. In this work, we advocate using finite mixture models based on Skew-Normal and Skew-t distributions for serological data analysis. These flexible mixing distributions have the advantage of describing right and left asymmetry often observed in the distributions of known antibody-negative and antibody-positive individuals, respectively. We illustrate the application of these alternative mixture models in a data set on the role of human herpesviruses in the Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.