Methods for data-driven multiscale model discovery for materials

被引:42
|
作者
Brunton, Steven L. [1 ]
Kutz, J. Nathan [2 ]
机构
[1] Univ Washington, Mech Engn, Seattle, WA 98195 USA
[2] Univ Washington, Appl Math, Seattle, WA 98195 USA
来源
JOURNAL OF PHYSICS-MATERIALS | 2019年 / 2卷 / 04期
关键词
model discovery; machine learning; sparse regression; metamaterials; SPARSE IDENTIFICATION; VARIATIONAL APPROACH; SPECTRAL PROPERTIES; DECOMPOSITION; DESIGN; ALGORITHMS; SYSTEMS; VALIDATION; PROJECTION; REDUCTION;
D O I
10.1088/2515-7639/ab291e
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Despite recent achievements in the design and manufacture of advanced materials, the contributions from first-principles modeling and simulation have remained limited, especially in regards to characterizing how macroscopic properties depend on the heterogeneous microstructure. An improved ability to model and understand these multiscale and anisotropic effects will be critical in designing future materials, especially given rapid improvements in the enabling technologies of additive manufacturing and active metamaterials. In this review, we discuss recent progress in the data-driven modeling of dynamical systems using machine learning and sparse optimization to generate parsimonious macroscopic models that are generalizable and interpretable. Such improvements in model discovery will facilitate the design and characterization of advanced materials by improving efforts in (1) molecular dynamics, (2) obtaining macroscopic constitutive equations, and (3) optimization and control of metamaterials.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Multiscale Data-Driven Energy Estimation and Generation
    Marchand, Tanguy
    Ozawa, Misaki
    Biroli, Giulio
    Mallat, Stéphane
    [J]. Physical Review X, 2023, 13 (04):
  • [32] Data-driven multiscale method for composite plates
    Wei Yan
    Wei Huang
    Qun Huang
    Jie Yang
    Gaetano Giunta
    Salim Belouettar
    Heng Hu
    [J]. Computational Mechanics, 2022, 70 : 1025 - 1040
  • [33] Data-driven multiscale method for composite plates
    Yan, Wei
    Huang, Wei
    Huang, Qun
    Yang, Jie
    Giunta, Gaetano
    Belouettar, Salim
    Hu, Heng
    [J]. COMPUTATIONAL MECHANICS, 2022, 70 (05) : 1025 - 1040
  • [34] Data-driven drug discovery by AI
    Miyano, Satoru
    Jinzaki, Masahiro
    [J]. CANCER SCIENCE, 2022, 113 : 1376 - 1376
  • [35] Data-Driven Discovery of Closure Models
    Pan, Shaowu
    Duraisamy, Karthik
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2018, 17 (04): : 2381 - 2413
  • [36] Data-driven analysis in drug discovery
    Kenakin, Terry
    [J]. JOURNAL OF RECEPTORS AND SIGNAL TRANSDUCTION, 2006, 26 (04) : 299 - 327
  • [37] DATA-DRIVEN DISCOVERY OF PHYSICAL LAWS
    LANGLEY, P
    [J]. COGNITIVE SCIENCE, 1981, 5 (01) : 31 - 54
  • [38] Descriptive multiscale modeling in data-driven neuroscience
    Haueis, Philipp
    [J]. SYNTHESE, 2022, 200 (02)
  • [39] Data-Driven Multiscale Science for Tread Compounding
    Burkhart, Craig
    Jiang, Bing
    Papakonstantopoulos, George
    Polinska, Patrycja
    Xu, Hongyi
    Sheridan, Richard J.
    Brinson, L. Catherine
    Chen, Wei
    [J]. TIRE SCIENCE AND TECHNOLOGY, 2023, 51 (02) : 114 - 131
  • [40] Descriptive multiscale modeling in data-driven neuroscience
    Philipp Haueis
    [J]. Synthese, 2022, 200