Data-driven multiscale method for composite plates

被引:0
|
作者
Wei Yan
Wei Huang
Qun Huang
Jie Yang
Gaetano Giunta
Salim Belouettar
Heng Hu
机构
[1] Wuhan University,School of Civil Engineering
[2] Luxembourg Institute of Science and Technology,undefined
来源
Computational Mechanics | 2022年 / 70卷
关键词
Data-driven computing; Structural-Genome-Driven; Multiscale finite element method; Composite plates;
D O I
暂无
中图分类号
学科分类号
摘要
Composite plates are widely used in many engineering fields such as aerospace and automotive. An accurate and efficient multiscale modeling and simulation strategy is of paramount importance to improve design and manufacture. To this end, we propose an efficient data-driven computing scheme based on the classical plate theory for the multiscale analysis of composite plates. In order to accurately describe the relationship between the macroscopic mechanical properties and the microscopic architecture, the multiscale finite element method (FE2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document}) is adopted to compute the generalized strain and stress fields. These data are then used to construct a database for data-driven computing. Since the database is offline populated, the data-driven computing scheme allows for a reduced computational cost when compared to the traditional multiscale method, where the concurrent coupling of different scales is still a burden. And data are obtained from a reduced structural model for computational efficiency. The proposed scheme is therefore addressed as Structural-Genome-Driven (SGD) modeling of plates. Compared to the general data-driven computational mechanics modeling of plates, SGD is found to be more efficient since the number of integration points is significantly reduced. This scheme provides a robust alternative computational tool for composite plate structures analysis.
引用
收藏
页码:1025 / 1040
页数:15
相关论文
共 50 条
  • [1] Data-driven multiscale method for composite plates
    Yan, Wei
    Huang, Wei
    Huang, Qun
    Yang, Jie
    Giunta, Gaetano
    Belouettar, Salim
    Hu, Heng
    [J]. COMPUTATIONAL MECHANICS, 2022, 70 (05) : 1025 - 1040
  • [2] A Data-Driven Multiscale Theory for Modeling Damage and Fracture of Composite Materials
    Shakoor, Modesar
    Gao, Jiaying
    Liu, Zeliang
    Liu, Wing Kam
    [J]. MESHFREE METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS IX, 2019, 129 : 135 - 148
  • [3] A Data-driven Multiscale Analysis for Hyperelastic Composite Materials Based on the Mean-field Homogenization Method
    Kim, Suhan
    Lee, Wonjoo
    Shin, Hyunseong
    [J]. COMPOSITES RESEARCH, 2023, 36 (05): : 329 - 334
  • [4] Data-driven inverse modelling of ionic polymer conductive composite plates
    Michopoulos, John G.
    Shahinpoor, Moshen
    [J]. COMPUTATIONAL SCIENCE - ICCS 2006, PT 2, PROCEEDINGS, 2006, 3992 : 131 - 138
  • [5] Data-Driven multiscale modeling in mechanics
    Karapiperis, K.
    Stainier, L.
    Ortiz, M.
    Andrade, J. E.
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2021, 147
  • [6] Data-driven multiscale finite element method: From concurrence to separation
    Xu, Rui
    Yang, Jie
    Yan, Wei
    Huang, Qun
    Giunta, Gaetano
    Belouettar, Salim
    Zahrouni, Hamid
    Ben Zineb, Tarak
    Hu, Heng
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 363
  • [7] A MULTISCALE DATA-DRIVEN STOCHASTIC METHOD FOR ELLIPTIC PDEs WITH RANDOM COEFFICIENTS
    Zhang, Zhiwen
    Ci, Maolin
    Hou, Thomas Y.
    [J]. MULTISCALE MODELING & SIMULATION, 2015, 13 (01): : 173 - 204
  • [8] Multiscale Data-Driven Energy Estimation and Generation
    Marchand, Tanguy
    Ozawa, Misaki
    Biroli, Giulio
    Mallat, Stéphane
    [J]. Physical Review X, 2023, 13 (04):
  • [9] Descriptive multiscale modeling in data-driven neuroscience
    Philipp Haueis
    [J]. Synthese, 2022, 200
  • [10] Data-Driven Multiscale Science for Tread Compounding
    Burkhart, Craig
    Jiang, Bing
    Papakonstantopoulos, George
    Polinska, Patrycja
    Xu, Hongyi
    Sheridan, Richard J.
    Brinson, L. Catherine
    Chen, Wei
    [J]. TIRE SCIENCE AND TECHNOLOGY, 2023, 51 (02) : 114 - 131