The Effects of Variations in Buffer Gas Mixing Ratios on Commercial Carbon Dioxide Cavity Ring-Down Spectroscopy Sensors

被引:7
|
作者
Long, D. A. [1 ]
Gameson, L. [1 ]
Truong, G. -W. [1 ,2 ]
Bielska, K. [1 ,3 ]
Cygan, A. [1 ,3 ]
Hodges, J. T. [1 ]
Whetstone, J. R. [4 ]
van Zee, R. D. [1 ]
机构
[1] NIST, Div Chem Sci, Mat Measurement Lab, Gaithersburg, MD 20899 USA
[2] Univ Western Australia, Sch Phys, Frequency Stand & Metrol Res Grp, Perth, WA 6009, Australia
[3] Nicolaus Copernicus Univ, Inst Phys, Fac Phys Astron & Informat, Torun, Poland
[4] NIST, Off Special Programs, Gaithersburg, MD 20899 USA
关键词
In situ atmospheric observations; Instrumentation; sensors; Surface observations; CH4; CO2; H2O; AIR; O-2; N-2;
D O I
10.1175/JTECH-D-13-00039.1
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Primary gas standards, gas chromatography, and frequency-stabilized cavity ring-down spectroscopy measurements have been used to assess the effect of variations in the argon mixing ratio on the CO2 mixing ratios reported by commercial cavity ring-down spectroscopy sensors. Supporting calculations demonstrate that the use of argon-free, synthetic air standards can lead to a bias of approximate to 0.7 mol mol(-1) at atmospheric concentration levels of CO2 as a result of pressure-broadening effects. This bias is an order of magnitude greater than the precision of the best commercial sensors and significantly exceeds the World Meteorological Organization's target compatibility goal.
引用
收藏
页码:2604 / 2609
页数:6
相关论文
共 50 条
  • [31] Quantifying Carbon-14 for Biology Using Cavity Ring-Down Spectroscopy
    McCartt, A. Daniel
    Ognibene, Ted J.
    Bench, Graham
    Turteltaub, Kenneth W.
    ANALYTICAL CHEMISTRY, 2016, 88 (17) : 8714 - 8719
  • [32] Buffer-gas Pressure Broadening for the Third Overtone Band of NO Measured with Continuous-wave Cavity Ring-down Spectroscopy
    Sakamoto, Yosuke
    Yamano, Daisuke
    Nakayama, Tomoki
    Kawasaki, Masahiro
    Morino, Isamu
    Inoue, Gen
    CHEMISTRY LETTERS, 2009, 38 (10) : 1000 - 1001
  • [33] Observation of methyl iodide clusters in gas phase by infrared cavity ring-down spectroscopy
    Ito, F
    Nakanaga, T
    Futami, Y
    Nakata, M
    CHEMICAL PHYSICS, 2003, 286 (2-3) : 337 - 345
  • [34] Cavity Ring-down Spectroscopy for Carbon Isotope Analysis with 2μm Diode Laser
    Hiromoto, K.
    Tomita, H.
    Watanabe, K.
    Kawarabayashi, J.
    Iguchi, T.
    4TH INTERNATIONAL CONFERENCE ON LASER PROBING - LAP 2008, 2009, 1104 : 144 - 148
  • [35] A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor
    E.R. Crosson
    Applied Physics B, 2008, 92 : 403 - 408
  • [36] A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor
    Crosson, E. R.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2008, 92 (03): : 403 - 408
  • [37] Real-time measurement of nitrogen dioxide in vehicle exhaust gas by mid-infrared cavity ring-down spectroscopy
    Y. Yamamoto
    H. Sumizawa
    H. Yamada
    K. Tonokura
    Applied Physics B, 2011, 105 : 923 - 931
  • [38] Real-time measurement of nitrogen dioxide in vehicle exhaust gas by mid-infrared cavity ring-down spectroscopy
    Yamamoto, Y.
    Sumizawa, H.
    Yamada, H.
    Tonokura, K.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 105 (04): : 923 - 931
  • [39] Buffer-gas pressure broadening for the 2ν 3 band of methane measured with continuous-wave cavity ring-down spectroscopy
    Yamano, D.
    Sakamoto, Y.
    Yabushita, A.
    Kawasaki, M.
    Morino, I.
    Inoue, G.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2009, 97 (02): : 523 - 528
  • [40] Buffer-gas pressure broadening for the 2ν3 band of methane measured with continuous-wave cavity ring-down spectroscopy
    D. Yamano
    Y. Sakamoto
    A. Yabushita
    M. Kawasaki
    I. Morino
    G. Inoue
    Applied Physics B, 2009, 97 : 523 - 528