The Effects of Variations in Buffer Gas Mixing Ratios on Commercial Carbon Dioxide Cavity Ring-Down Spectroscopy Sensors

被引:7
|
作者
Long, D. A. [1 ]
Gameson, L. [1 ]
Truong, G. -W. [1 ,2 ]
Bielska, K. [1 ,3 ]
Cygan, A. [1 ,3 ]
Hodges, J. T. [1 ]
Whetstone, J. R. [4 ]
van Zee, R. D. [1 ]
机构
[1] NIST, Div Chem Sci, Mat Measurement Lab, Gaithersburg, MD 20899 USA
[2] Univ Western Australia, Sch Phys, Frequency Stand & Metrol Res Grp, Perth, WA 6009, Australia
[3] Nicolaus Copernicus Univ, Inst Phys, Fac Phys Astron & Informat, Torun, Poland
[4] NIST, Off Special Programs, Gaithersburg, MD 20899 USA
关键词
In situ atmospheric observations; Instrumentation; sensors; Surface observations; CH4; CO2; H2O; AIR; O-2; N-2;
D O I
10.1175/JTECH-D-13-00039.1
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Primary gas standards, gas chromatography, and frequency-stabilized cavity ring-down spectroscopy measurements have been used to assess the effect of variations in the argon mixing ratio on the CO2 mixing ratios reported by commercial cavity ring-down spectroscopy sensors. Supporting calculations demonstrate that the use of argon-free, synthetic air standards can lead to a bias of approximate to 0.7 mol mol(-1) at atmospheric concentration levels of CO2 as a result of pressure-broadening effects. This bias is an order of magnitude greater than the precision of the best commercial sensors and significantly exceeds the World Meteorological Organization's target compatibility goal.
引用
收藏
页码:2604 / 2609
页数:6
相关论文
共 50 条
  • [21] Trace gas analysis by diode laser cavity ring-down spectroscopy
    Yan, WB
    Krusen, C
    Optics, T
    Dudek, J
    Lehmann, K
    Rabinowitz, P
    2002 IEEE/SEMI ADVANCED SEMICONDUCTOR MANUFACTURING CONFERENCE AND WORKSHOP: ADVANCING THE SCIENCE OF SEMICONDUCTOR MANUFACTURING EXCELLENCE, 2002, : 319 - 323
  • [22] Carbon Dioxide and Methane in the China Sea Shelf Boundary Layer Observed by Cavity Ring-Down Spectroscopy
    Zang, Kun-Peng
    Zhou, Ling-Xi
    Wang, Ju-Ying
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2017, 34 (10) : 2233 - 2244
  • [23] Quantifying carbon-14 with cavity ring-down spectroscopy for biology
    McCartt, Alan
    Ognibene, Ted
    Bench, Graham
    Turteltaub, Kenneth
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [24] Uncertainty assessment of carbon dioxide concentration measurement with a cavity ring-down spectrometer
    Wang, Xing
    Zhou, Zeyi
    PROCEEDINGS OF THE 2015 4TH INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY AND ENVIRONMENTAL ENGINEERING, 2016, 53 : 437 - 444
  • [25] Trace gas detection with CW cavity ring-down laser absorption spectroscopy
    Yan, WB
    Dudek, J
    Lehmann, K
    Rabinowitz, P
    2000 IEEE/SEMI ADVANCED SEMICONDUCTOR MANUFACTURING CONFERENCE AND WORKSHOP, 2000, : 203 - 206
  • [26] Modification of a commercial cavity ring-down spectroscopy NO2 detector for enhanced sensitivity
    Castellanos, Patricia
    Luke, Winston T.
    Kelley, Paul
    Stehr, Jeffrey W.
    Ehrman, Sheryl H.
    Dickerson, Russell R.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (11):
  • [27] Absolute Measurements of Total Peroxy Nitrate Mixing Ratios by Thermal Dissociation Blue Diode Laser Cavity Ring-Down Spectroscopy
    Paul, Dipayan
    Osthoff, Hans D.
    ANALYTICAL CHEMISTRY, 2010, 82 (15) : 6695 - 6703
  • [28] Cavity Ring-Down Spectroscopy for ultra sensitive trace gas analysis.
    Yan, WB
    Markowski, ML
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 222 : U111 - U111
  • [29] Stable isotope ratios using cavity ring-down spectroscopy:: Determination of 13C/12C for carbon dioxide in human breath
    Crosson, ER
    Ricci, KN
    Richman, BA
    Chilese, FC
    Owano, TG
    Provencal, RA
    Todd, MW
    Glasser, J
    Kachanov, AA
    Paldus, BA
    Spence, TG
    Zare, RN
    ANALYTICAL CHEMISTRY, 2002, 74 (09) : 2003 - 2007
  • [30] Radiocarbon dioxide detection based on cavity ring-down spectroscopy and a quantum cascade laser
    Genoud, G.
    Vainio, M.
    Phillips, H.
    Dean, J.
    Merimaa, M.
    OPTICS LETTERS, 2015, 40 (07) : 1342 - 1345