The Effects of Variations in Buffer Gas Mixing Ratios on Commercial Carbon Dioxide Cavity Ring-Down Spectroscopy Sensors

被引:7
|
作者
Long, D. A. [1 ]
Gameson, L. [1 ]
Truong, G. -W. [1 ,2 ]
Bielska, K. [1 ,3 ]
Cygan, A. [1 ,3 ]
Hodges, J. T. [1 ]
Whetstone, J. R. [4 ]
van Zee, R. D. [1 ]
机构
[1] NIST, Div Chem Sci, Mat Measurement Lab, Gaithersburg, MD 20899 USA
[2] Univ Western Australia, Sch Phys, Frequency Stand & Metrol Res Grp, Perth, WA 6009, Australia
[3] Nicolaus Copernicus Univ, Inst Phys, Fac Phys Astron & Informat, Torun, Poland
[4] NIST, Off Special Programs, Gaithersburg, MD 20899 USA
关键词
In situ atmospheric observations; Instrumentation; sensors; Surface observations; CH4; CO2; H2O; AIR; O-2; N-2;
D O I
10.1175/JTECH-D-13-00039.1
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Primary gas standards, gas chromatography, and frequency-stabilized cavity ring-down spectroscopy measurements have been used to assess the effect of variations in the argon mixing ratio on the CO2 mixing ratios reported by commercial cavity ring-down spectroscopy sensors. Supporting calculations demonstrate that the use of argon-free, synthetic air standards can lead to a bias of approximate to 0.7 mol mol(-1) at atmospheric concentration levels of CO2 as a result of pressure-broadening effects. This bias is an order of magnitude greater than the precision of the best commercial sensors and significantly exceeds the World Meteorological Organization's target compatibility goal.
引用
收藏
页码:2604 / 2609
页数:6
相关论文
共 50 条
  • [1] Frequency-stabilized cavity ring-down spectroscopy measurements of carbon dioxide isotopic ratios
    Long, D. A.
    Okumura, M.
    Miller, C. E.
    Hodges, J. T.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 105 (02): : 471 - 477
  • [2] Frequency-stabilized cavity ring-down spectroscopy measurements of carbon dioxide isotopic ratios
    D. A. Long
    M. Okumura
    C. E. Miller
    J. T. Hodges
    Applied Physics B, 2011, 105 : 471 - 477
  • [3] Detection of Sulfur Dioxide by Cavity Ring-Down Spectroscopy
    Medina, David S.
    Liu, Yingdi
    Wang, Liming
    Zhang, Jingsong
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (05) : 1926 - 1931
  • [4] Trace gas detection of nitrogen dioxide using cavity ring-down spectroscopy
    Dudek, John
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [5] Cavity ring-down spectroscopy for trace gas analysis
    Czyzewski, A
    Ernst, K
    Karasinski, G
    Lange, H
    Rairoux, P
    Skubiszak, W
    Stacewicz, T
    ACTA PHYSICA POLONICA B, 2002, 33 (08): : 2255 - 2265
  • [6] Continuous wave cavity ring-down spectroscopy measurement of NO2 mixing ratios in ambient air
    Wada, R
    Orr-Ewing, AJ
    ANALYST, 2005, 130 (12) : 1595 - 1600
  • [7] Atmospheric trace gas analysis with cavity ring-down spectroscopy
    Kleine, D
    Mürtz, M
    Lauterbach, J
    Dahnke, H
    Urban, WG
    Hering, P
    Kleinermanns, K
    ISRAEL JOURNAL OF CHEMISTRY, 2001, 41 (02) : 111 - 116
  • [8] THz cavity ring-down quantitative gas phase spectroscopy
    Elmaleh, Coralie
    Simon, Fabien
    Decker, Jean
    Dumont, Julien
    Cazier, Fabrice
    Fourmentin, Marc
    Bocquet, Robin
    Cuisset, Arnaud
    Mouret, Gael
    Hindle, Francis
    TALANTA, 2023, 253
  • [9] Measurements of carbon-14 with cavity ring-down spectroscopy
    McCartt, A. D.
    Ognibene, T.
    Bench, G.
    Turteltaub, K.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2015, 361 : 277 - 280
  • [10] Cavity ring-down spectroscopy of carbon-containing molecules
    Staicu, A
    Sukhorukov, O
    Rouillé, G
    Huisken, F
    Henning, T
    ROMOPTO 2003: SEVENTH CONFERENCE ON OPTICS, 2004, 5581 : 670 - 676