Metro Traffic Flow Prediction via Knowledge Graph and Spatiotemporal Graph Neural Network

被引:8
|
作者
Wang, Shun [1 ]
Lv, Yimei [2 ]
Peng, Yuan [3 ]
Piao, Xinglin [1 ]
Zhang, Yong [1 ]
机构
[1] Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Qingdao Engn Vocat Coll, Qingdao 266011, Peoples R China
[3] Taiji Co Ltd, China Elect Technol Grp, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1155/2022/2348375
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Existing traffic flow prediction methods generally only consider the spatiotemporal characteristics of traffic flow. However, in addition to the spatiotemporal characteristics, the interference of various external factors needs to be considered in traffic flow prediction, including severe weather, major events, traffic control, and metro failures. The current research still cannot fully use the information contained in these external factors. To address this issue, we propose a novel metro traffic flow prediction method (KGR-STGNN) based on knowledge graph representation learning. We construct a knowledge graph that stores factors related to metro traffic networks. Through the knowledge graph representation learning technology, we can learn the influence representation of external factors from the traffic knowledge graph, which can better incorporate the influence of external factors into the prediction model based on the spatiotemporal graph neural network. Experimental results demonstrate the effectiveness of our proposed model.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Metro Traffic Flow Prediction via Knowledge Graph and Spatiotemporal Graph Neural Network
    Beijing Artificial Intelligence Institute, Faculty of Information Technology, Beijing University of Technology, Beijing
    100124, China
    不详
    266011, China
    不详
    100083, China
    J Adv Transp, 2022,
  • [2] A Spatiotemporal Graph Neural Network with Graph Adaptive and Attention Mechanisms for Traffic Flow Prediction
    Huo, Yanqiang
    Zhang, Han
    Tian, Yuan
    Wang, Zijian
    Wu, Jianqing
    Yao, Xinpeng
    ELECTRONICS, 2024, 13 (01)
  • [3] SPATIOTEMPORAL GRAPH CONVOLUTIONAL NEURAL NETWORKS FOR METRO FLOW PREDICTION
    Jin, Shiyuan
    Jing, Changfeng
    Wang, Yi
    Lv, Xinxin
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION IV, 2022, 43-B4 : 403 - 409
  • [4] Knowledge fusion enhanced graph neural network for traffic flow prediction
    Wang, Shun
    Zhang, Yong
    Hu, Yongli
    Yin, Baocai
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 623
  • [5] An adaptive traffic flow prediction model based on spatiotemporal graph neural network
    Liu, Tianbo
    Zhang, Jindong
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (14): : 15245 - 15269
  • [6] An adaptive traffic flow prediction model based on spatiotemporal graph neural network
    Tianbo Liu
    Jindong Zhang
    The Journal of Supercomputing, 2023, 79 : 15245 - 15269
  • [7] Traffic Flow Prediction via Spatial Temporal Graph Neural Network
    Wang, Xiaoyang
    Ma, Yao
    Wang, Yiqi
    Jin, Wei
    Wang, Xin
    Tang, Jiliang
    Jia, Caiyan
    Yu, Jian
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 1082 - 1092
  • [8] A Spatiotemporal Multiscale Graph Convolutional Network for Traffic Flow Prediction
    Cao, Shuqin
    Wu, Libing
    Zhang, Rui
    Wu, Dan
    Cui, Jianqun
    Chang, Yanan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (08) : 8705 - 8718
  • [9] Dynamic Spatiotemporal Graph Wavelet Network for Traffic Flow Prediction
    Xu, Weijian
    Liu, Jingjin
    Yan, Jingwen
    Yang, Juan
    Liu, Huifen
    Zhou, Teng
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (05): : 8019 - 8029
  • [10] Spatiotemporal Graph Neural Network for Traffic Prediction Exploiting Cascading Behavior
    Zhang, Haoxiang
    Gan, Xiaoying
    Fu, Luoyi
    Xiang, Liyao
    Jin, Haiming
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,