A Spatiotemporal Graph Neural Network with Graph Adaptive and Attention Mechanisms for Traffic Flow Prediction

被引:1
|
作者
Huo, Yanqiang [1 ,2 ]
Zhang, Han [1 ,2 ,3 ]
Tian, Yuan [1 ,2 ]
Wang, Zijian [2 ,3 ]
Wu, Jianqing [1 ,2 ]
Yao, Xinpeng [2 ,3 ]
机构
[1] Shandong Univ, Sch Qilu Transportat, Jinan 250100, Peoples R China
[2] Shandong Key Lab Smart Transportat Preparat, Jinan 250357, Peoples R China
[3] Shandong Hispeed Grp, 8 Longao North Rd, Jinan 250014, Peoples R China
关键词
graph neural network traffic flow forecasting; deep learning; graph adaptive; CONGESTION CONTROL;
D O I
10.3390/electronics13010212
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study addresses the complex challenges associated with road traffic flow prediction and congestion management through the enhancement of the attention-based spatiotemporal graph convolutional network (ASTGCN) algorithm. Leveraging toll data and real-time traffic flow information from Orange County, California, the algorithm undergoes refinement to adeptly capture abrupt changes in road traffic dynamics and identify instances of acute congestion. The optimization of the graph structure is approached from both macro and micro perspectives, incorporating key factors such as road toll information, node connectivity, and spatial distances. A novel graph self-learning module is introduced to facilitate real-time adjustments, while an attention mechanism is seamlessly integrated into the spatiotemporal graph convolution module. The resultant model, termed AASTGNet, exhibits superior predictive accuracy compared to existing methodologies, with MAE, RMSE, and MAPE values of 8.6204, 14.0779, and 0.2402, respectively. This study emphasizes the importance of incorporating tolling schemes in road traffic flow prediction, addresses static graph structure limitations, and adapts dynamically to temporal variations and unexpected road events. The findings contribute to advancing the field of traffic prediction and congestion management, providing valuable insights for future research and practical applications.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] An adaptive traffic flow prediction model based on spatiotemporal graph neural network
    Liu, Tianbo
    Zhang, Jindong
    [J]. JOURNAL OF SUPERCOMPUTING, 2023, 79 (14): : 15245 - 15269
  • [2] An adaptive traffic flow prediction model based on spatiotemporal graph neural network
    Tianbo Liu
    Jindong Zhang
    [J]. The Journal of Supercomputing, 2023, 79 : 15245 - 15269
  • [3] Metro Traffic Flow Prediction via Knowledge Graph and Spatiotemporal Graph Neural Network
    Wang, Shun
    Lv, Yimei
    Peng, Yuan
    Piao, Xinglin
    Zhang, Yong
    [J]. JOURNAL OF ADVANCED TRANSPORTATION, 2022, 2022
  • [4] Traffic Flow Prediction Model Based on Attention Spatiotemporal Graph Convolutional Network
    Sun, HongXian
    [J]. 2023 3rd International Symposium on Computer Technology and Information Science, ISCTIS 2023, 2023, : 148 - 153
  • [5] Road traffic flow prediction based on dynamic spatiotemporal graph attention network
    Chen, Yuguang
    Huang, Jintao
    Xu, Hongbin
    Guo, Jincheng
    Su, Linyong
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [6] Road traffic flow prediction based on dynamic spatiotemporal graph attention network
    Yuguang Chen
    Jintao Huang
    Hongbin Xu
    Jincheng Guo
    Linyong Su
    [J]. Scientific Reports, 13
  • [7] Spatiotemporal Graph Attention Networks for Urban Traffic Flow Prediction
    Zhao, Yuanpeng
    Xu, Yepeng
    He, Xitao
    Zhang, Dengyin
    [J]. 2022 IEEE 33RD ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (IEEE PIMRC), 2022, : 340 - 345
  • [8] Spatiotemporal Residual Graph Attention Network for Traffic Flow Forecasting
    Zhang, Qingyong
    Li, Changwu
    Su, Fuwen
    Li, Yuanzheng
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (13): : 11518 - 11532
  • [9] Traffic flow matrix-based graph neural network with attention mechanism for traffic flow prediction
    Chen, Jian
    Zheng, Li
    Hu, Yuzhu
    Wang, Wei
    Zhang, Hongxing
    Hu, Xiping
    [J]. INFORMATION FUSION, 2024, 104
  • [10] A Spatiotemporal Multiscale Graph Convolutional Network for Traffic Flow Prediction
    Cao, Shuqin
    Wu, Libing
    Zhang, Rui
    Wu, Dan
    Cui, Jianqun
    Chang, Yanan
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, : 1 - 14