On the efficiency of quantum algorithms for Hamiltonian simulation

被引:26
|
作者
Papageorgiou, Anargyros [1 ]
Zhang, Chi [1 ]
机构
[1] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Quantum simulation; Complexity; Hamiltonian evolution; Splitting methods; Order of convergence; MANY-BODY THEORIES; COMPUTERS; SYSTEMS; PHYSICS;
D O I
10.1007/s11128-011-0263-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study algorithms simulating a system evolving with Hamiltonian H = Sigma(m)(j=1) H-j, where each of the H-j, j = 1, . . . , m, can be simulated efficiently. We are interested in the cost for approximating e(-iHt), t is an element of R, with error epsilon. We consider algorithms based on high order splitting formulas that play an important role in quantum Hamiltonian simulation. These formulas approximate e(-iHt) by a product of exponentials involving the H-j, j = 1, . . . , m. We obtain an upper bound for the number of required exponentials. Moreover, we derive the order of the optimal splitting method that minimizes our upper bound. We show significant speedups relative to previously known results.
引用
收藏
页码:541 / 561
页数:21
相关论文
共 50 条
  • [31] Algorithms for Quantum Simulation at Finite Energies
    Lu, Sirui
    Banuls, Mari Carmen
    Cirac, J. Ignacio
    PRX QUANTUM, 2021, 2 (02):
  • [32] Simulation of quantum algorithms on a symbolic computer
    Nyman, Peter
    FOUNDATIONS OF PROBABILITY AND PHYSICS - 4, 2007, 889 : 383 - 389
  • [33] AN ALGEBRAIC QUANTUM CIRCUIT COMPRESSION ALGORITHM FOR HAMILTONIAN SIMULATION
    Camps, Daan
    Kokcou, Efekan
    Bassman, Lindsay
    De Jong, Wibe A.
    Kemper, Alexander E.
    Van Beeumen, Roel
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2022, 43 (03) : 1084 - 1108
  • [34] Hamiltonian quantum simulation with bounded-strength controls
    Bookatz, Adam D.
    Wocjan, Pawel
    Viola, Lorenza
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [35] Optimizing quantum phase estimation for the simulation of Hamiltonian eigenstates
    Cruz, P. M. Q.
    Catarina, G.
    Gautier, R.
    Fernandez-Rossier, J.
    QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (04)
  • [36] Quantum simulation of the two-site Hubbard Hamiltonian
    Melo, Filipe V.
    Souza, Alexandre M.
    Oliveira, Ivan S.
    Sarthour, Roberto S.
    PHYSICS OPEN, 2021, 6
  • [37] Quantum simulation of a qubit with a non-Hermitian Hamiltonian
    Jebraeilli, Anastashia
    Geller, Michael R.
    PHYSICAL REVIEW A, 2025, 111 (03)
  • [38] Parametrized Hamiltonian simulation using quantum optimal control
    Kairys, Paul
    Humble, Travis S.
    PHYSICAL REVIEW A, 2021, 104 (04)
  • [39] Tridiagonal matrix decomposition for Hamiltonian simulation on a quantum computer
    Arseniev, Boris
    Guskov, Dmitry
    Sengupta, Richik
    Biamonte, Jacob
    Zacharov, Igor
    PHYSICAL REVIEW A, 2024, 109 (05)
  • [40] Experimental simulation of a pairing Hamiltonian on an NMR quantum computer
    Yang, XD
    Wang, AM
    Xu, F
    Du, JF
    CHEMICAL PHYSICS LETTERS, 2006, 422 (1-3) : 20 - 24