On the efficiency of quantum algorithms for Hamiltonian simulation

被引:26
|
作者
Papageorgiou, Anargyros [1 ]
Zhang, Chi [1 ]
机构
[1] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Quantum simulation; Complexity; Hamiltonian evolution; Splitting methods; Order of convergence; MANY-BODY THEORIES; COMPUTERS; SYSTEMS; PHYSICS;
D O I
10.1007/s11128-011-0263-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study algorithms simulating a system evolving with Hamiltonian H = Sigma(m)(j=1) H-j, where each of the H-j, j = 1, . . . , m, can be simulated efficiently. We are interested in the cost for approximating e(-iHt), t is an element of R, with error epsilon. We consider algorithms based on high order splitting formulas that play an important role in quantum Hamiltonian simulation. These formulas approximate e(-iHt) by a product of exponentials involving the H-j, j = 1, . . . , m. We obtain an upper bound for the number of required exponentials. Moreover, we derive the order of the optimal splitting method that minimizes our upper bound. We show significant speedups relative to previously known results.
引用
收藏
页码:541 / 561
页数:21
相关论文
共 50 条
  • [21] CORRECTED QUANTUM WALK FOR OPTIMAL HAMILTONIAN SIMULATION
    Berry, Dominic W.
    Novo, Leonardo
    QUANTUM INFORMATION & COMPUTATION, 2016, 16 (15-16) : 1295 - 1317
  • [22] A Mathematical Framework for Quantum Hamiltonian Simulation and Duality
    Apel, Harriet
    Cubitt, Toby
    ANNALES HENRI POINCARE, 2025, 26 (01): : 317 - 364
  • [23] Optimal Hamiltonian Simulation by Quantum Signal Processing
    Low, Guang Hao
    Chuang, Isaac L.
    PHYSICAL REVIEW LETTERS, 2017, 118 (01)
  • [24] Divide and conquer approach to quantum Hamiltonian simulation
    Hadfield, Stuart
    Papageorgiou, Anargyros
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [25] Witnessing eigenstates for quantum simulation of Hamiltonian spectra
    Santagati, Raffaele
    Wang, Jianwei
    Gentile, Antonio A.
    Paesani, Stefano
    Wiebe, Nathan
    McClean, Jarrod R.
    Morley-Short, Sam
    Shadbolt, Peter J.
    Bonneau, Damien
    Silverstone, Joshua W.
    Tew, David P.
    Zhou, Xiaoqi
    O'Brien, Jeremy L.
    Thompson, Mark G.
    SCIENCE ADVANCES, 2018, 4 (01):
  • [26] Programmable quantum simulation by dynamic Hamiltonian engineering
    Hayes, David
    Flammia, Steven T.
    Biercuk, Michael J.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [27] Quantum Computing Simulation of a Phase Change in a Cavity Quantum Electrodynamics Hamiltonian
    Tudorovskaya, Maria
    Ramo, David Munoz
    2024 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING, QCE, VOL 2, 2024, : 561 - 562
  • [28] A logic for quantum computation and classical simulation of quantum algorithms
    Patra, M. K.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2008, 6 (02) : 255 - 280
  • [29] QUANTUM ALGORITHMS Equation solving by simulation
    Childs, Andrew M.
    NATURE PHYSICS, 2009, 5 (12) : 861 - 861
  • [30] Quantum Algorithms and Simulation for Parallel and Distributed Quantum Computing
    Parekh, Rhea
    Ricciardi, Andrea
    Darwish, Ahmed
    DiAdamo, Stephen
    PROCEEDINGS OF SECOND INTERNATIONAL WORKSHOP ON QUANTUM COMPUTING SOFTWARE (QCS 2021), 2021, : 9 - 19