On the efficiency of quantum algorithms for Hamiltonian simulation

被引:26
|
作者
Papageorgiou, Anargyros [1 ]
Zhang, Chi [1 ]
机构
[1] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Quantum simulation; Complexity; Hamiltonian evolution; Splitting methods; Order of convergence; MANY-BODY THEORIES; COMPUTERS; SYSTEMS; PHYSICS;
D O I
10.1007/s11128-011-0263-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study algorithms simulating a system evolving with Hamiltonian H = Sigma(m)(j=1) H-j, where each of the H-j, j = 1, . . . , m, can be simulated efficiently. We are interested in the cost for approximating e(-iHt), t is an element of R, with error epsilon. We consider algorithms based on high order splitting formulas that play an important role in quantum Hamiltonian simulation. These formulas approximate e(-iHt) by a product of exponentials involving the H-j, j = 1, . . . , m. We obtain an upper bound for the number of required exponentials. Moreover, we derive the order of the optimal splitting method that minimizes our upper bound. We show significant speedups relative to previously known results.
引用
收藏
页码:541 / 561
页数:21
相关论文
共 50 条
  • [1] On the efficiency of quantum algorithms for Hamiltonian simulation
    Anargyros Papageorgiou
    Chi Zhang
    Quantum Information Processing, 2012, 11 : 541 - 561
  • [2] Hamiltonian simulation algorithms for near-term quantum hardware
    Laura Clinton
    Johannes Bausch
    Toby Cubitt
    Nature Communications, 12
  • [3] Hamiltonian simulation algorithms for near-term quantum hardware
    Clinton, Laura
    Bausch, Johannes
    Cubitt, Toby
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [4] Doubling the efficiency of Hamiltonian simulation via generalized quantum signal processing
    Berry, Dominic W.
    Motlagh, Danial
    Pantaleoni, Giacomo
    Wiebe, Nathan
    PHYSICAL REVIEW A, 2024, 110 (01)
  • [5] Quantum Algorithms for Testing Hamiltonian Symmetry
    LaBorde, Margarite L.
    Wilde, Mark M.
    PHYSICAL REVIEW LETTERS, 2022, 129 (16)
  • [6] Symplectic algorithms for the simulation of Hamiltonian dynamics
    Casetti, L
    MONTE CARLO AND MOLECULAR DYNAMICS OF CONDENSED MATTER SYSTEMS, 1996, 49 : 935 - &
  • [7] A quantum hamiltonian simulation benchmark
    Yulong Dong
    K. Birgitta Whaley
    Lin Lin
    npj Quantum Information, 8
  • [8] Quantum Simulation with a Trilinear Hamiltonian
    Ding, Shiqian
    Maslennikov, Gleb
    Hablutzel, Roland
    Matsukevich, Dzmitry
    PHYSICAL REVIEW LETTERS, 2018, 121 (13)
  • [9] A quantum hamiltonian simulation benchmark
    Dong, Yulong
    Whaley, K. Birgitta
    Lin, Lin
    NPJ QUANTUM INFORMATION, 2022, 8 (01)
  • [10] Variational quantum algorithms for discovering Hamiltonian spectra
    Jones, Tyson
    Endo, Suguru
    McArdle, Sam
    Yuan, Xiao
    Benjamin, Simon C.
    PHYSICAL REVIEW A, 2019, 99 (06)