Commutativity in the Algorithmic Lovasz Local Lemma

被引:15
|
作者
Kolmogorov, Vladimir [1 ]
机构
[1] IST Austria, Klosterneuburg, Austria
关键词
component; formatting; style; styling; TARDOS; MOSER;
D O I
10.1109/FOCS.2016.88
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the recent formulation of the Algorithmic Lovasz Local Lemma [1], [2] for finding objects that avoid "bad features", or "flaws". It extends the Moser-Tardos resampling algorithm [3] to more general discrete spaces. At each step the method picks a flaw present in the current state and "resamples" it using a "resampling oracle" provided by the user. However, it is less flexible than the Moser-Tardos method since [1], [2] require a specific flaw selection rule, whereas [3] allows an arbitrary rule (and thus can potentially be implemented more efficiently). We formulate a new "commutativity" condition, and prove that it is sufficient for an arbitrary rule to work. It also enables an efficient parallelization under an additional assumption. We then show that existing resampling oracles for perfect matchings and permutations do satisfy this condition. Finally, we generalize the precondition in [2] (in the case of symmetric potential causality graphs). This unifies special cases that previously were treated separately.
引用
收藏
页码:780 / 787
页数:8
相关论文
共 50 条
  • [41] Distributed algorithms, the Lovasz Local Lemma, and descriptive combinatorics
    Bernshteyn, Anton
    INVENTIONES MATHEMATICAE, 2023, 233 (02) : 495 - 542
  • [42] Distributed algorithms for the Lovasz local lemma and graph coloring
    Chung, Kai-Min
    Pettie, Seth
    Su, Hsin-Hao
    DISTRIBUTED COMPUTING, 2017, 30 (04) : 261 - 280
  • [43] An Improvement of the Lovasz Local Lemma via Cluster Expansion
    Bissacot, Rodrigo
    Fernandez, Roberto
    Procacci, Aldo
    Scoppola, Benedetto
    COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (05): : 709 - 719
  • [44] Using Lovasz Local Lemma in the space of random injections
    Lu, Linyuan
    Szekely, Laszlo
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [45] Distributed Algorithms for the Lovasz Local Lemma and Graph Coloring
    Chung, Kai-Min
    Pettie, Seth
    Su, Hsin-Hao
    PROCEEDINGS OF THE 2014 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC'14), 2014, : 134 - 143
  • [46] Kolmogorov complexity, lovasz local lemma and critical exponents
    Rumyantsev, Andrey Yu.
    Computer Science - Theory and Applications, 2007, 4649 : 349 - 355
  • [47] A PARALLEL ALGORITHMIC VERSION OF THE LOCAL LEMMA
    ALON, N
    RANDOM STRUCTURES & ALGORITHMS, 1991, 2 (04) : 367 - 378
  • [48] A Sharp Threshold Phenomenon for the Distributed Complexity of the Lovasz Local Lemma
    Brandt, Sebastian
    Maus, Yannic
    Uitto, Jara
    PROCEEDINGS OF THE 2019 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC '19), 2019, : 389 - 398
  • [49] The Lovasz Local Lemma and its applications to some combinatorial arrays
    Deng, D
    Stinson, DR
    Wei, R
    DESIGNS CODES AND CRYPTOGRAPHY, 2004, 32 (1-3) : 121 - 134
  • [50] Qantum Lovasz Local Lemma: Shearer's Bound Is Tight
    He, Kun
    Li, Qian
    Sun, Xiaoming
    Zhang, Jiapeng
    PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, : 461 - 472