Commutativity in the Algorithmic Lovasz Local Lemma

被引:15
|
作者
Kolmogorov, Vladimir [1 ]
机构
[1] IST Austria, Klosterneuburg, Austria
关键词
component; formatting; style; styling; TARDOS; MOSER;
D O I
10.1109/FOCS.2016.88
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the recent formulation of the Algorithmic Lovasz Local Lemma [1], [2] for finding objects that avoid "bad features", or "flaws". It extends the Moser-Tardos resampling algorithm [3] to more general discrete spaces. At each step the method picks a flaw present in the current state and "resamples" it using a "resampling oracle" provided by the user. However, it is less flexible than the Moser-Tardos method since [1], [2] require a specific flaw selection rule, whereas [3] allows an arbitrary rule (and thus can potentially be implemented more efficiently). We formulate a new "commutativity" condition, and prove that it is sufficient for an arbitrary rule to work. It also enables an efficient parallelization under an additional assumption. We then show that existing resampling oracles for perfect matchings and permutations do satisfy this condition. Finally, we generalize the precondition in [2] (in the case of symmetric potential causality graphs). This unifies special cases that previously were treated separately.
引用
收藏
页码:780 / 787
页数:8
相关论文
共 50 条
  • [31] A Constructive Proof of the General Lovasz Local Lemma
    Moser, Robin A.
    Tardos, Gabor
    JOURNAL OF THE ACM, 2010, 57 (02)
  • [32] Uniform Sampling Through the Lovasz Local Lemma
    Guo, Heng
    Jerrum, Mark
    Liu, Jingcheng
    JOURNAL OF THE ACM, 2019, 66 (03)
  • [33] A (1+ε) -: Approximation algorithm for partitioning hypergraphs using a new algorithmic version of the Lovasz local lemma
    Salavatipour, MR
    PROCEEDINGS OF THE FOURTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2003, : 347 - 356
  • [34] Uniform Sampling through the Lovasz Local Lemma
    Guo, Heng
    Jerrum, Mark
    Liu, Jingcheng
    STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, : 342 - 355
  • [35] Simple Local Computation Algorithms for the General Lovasz Local Lemma
    Achlioptas, Dimitris
    Gouleakis, Themis
    Iliopoulos, Fotis
    PROCEEDINGS OF THE 32ND ACM SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES (SPAA '20), 2020, : 1 - 10
  • [36] A (1+ε)-approximation algorithm for partitioning hypergraphs using a new algorithmic version of the Lovasz Local Lemma (Reprinted)
    Salavatipour, MR
    RANDOM STRUCTURES & ALGORITHMS, 2004, 25 (01) : 68 - 90
  • [37] Acyclic edge coloring through the Lovasz Local Lemma
    Giotis, Ioannis
    Kirousis, Lefteris
    Psaromiligkos, Kostas I.
    Thilikos, Dimitrios M.
    THEORETICAL COMPUTER SCIENCE, 2017, 665 : 40 - 50
  • [38] A CONSTRUCTIVE QUANTUM LOVASZ LOCAL LEMMA FOR COMMUTING PROJECTORS
    Sattath, Or
    Arad, Itai
    QUANTUM INFORMATION & COMPUTATION, 2015, 15 (11-12) : 987 - 996
  • [39] Constraint Satisfaction, Packet Routing, and the Lovasz Local Lemma
    Harris, David G.
    Srinivasan, Aravind
    STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2013, : 685 - 694
  • [40] A Kolmogorov complexity proof of the Lovasz Local Lemma for satisfiability
    Messner, Jochen
    Thierauf, Thomas
    THEORETICAL COMPUTER SCIENCE, 2012, 461 : 55 - 64