Commutativity in the Algorithmic Lovasz Local Lemma

被引:15
|
作者
Kolmogorov, Vladimir [1 ]
机构
[1] IST Austria, Klosterneuburg, Austria
关键词
component; formatting; style; styling; TARDOS; MOSER;
D O I
10.1109/FOCS.2016.88
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the recent formulation of the Algorithmic Lovasz Local Lemma [1], [2] for finding objects that avoid "bad features", or "flaws". It extends the Moser-Tardos resampling algorithm [3] to more general discrete spaces. At each step the method picks a flaw present in the current state and "resamples" it using a "resampling oracle" provided by the user. However, it is less flexible than the Moser-Tardos method since [1], [2] require a specific flaw selection rule, whereas [3] allows an arbitrary rule (and thus can potentially be implemented more efficiently). We formulate a new "commutativity" condition, and prove that it is sufficient for an arbitrary rule to work. It also enables an efficient parallelization under an additional assumption. We then show that existing resampling oracles for perfect matchings and permutations do satisfy this condition. Finally, we generalize the precondition in [2] (in the case of symmetric potential causality graphs). This unifies special cases that previously were treated separately.
引用
收藏
页码:780 / 787
页数:8
相关论文
共 50 条
  • [1] Improved Algorithmic Versions of the Lovasz Local Lemma
    Srinivasan, Aravind
    PROCEEDINGS OF THE NINETEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2008, : 611 - 620
  • [2] AN ALGORITHMIC APPROACH TO THE LOVASZ LOCAL LEMMA .1.
    BECK, J
    RANDOM STRUCTURES & ALGORITHMS, 1991, 2 (04) : 343 - 365
  • [3] COMMUTATIVITY IN THE ALGORITHMIC LOV ASZ LOCAL LEMMA
    Kolmogorov, Vladimir
    SIAM JOURNAL ON COMPUTING, 2018, 47 (06) : 2029 - 2056
  • [4] AN ALGORITHMIC PROOF OF THE LOVASZ LOCAL LEMMA VIA RESAMPLING ORACLES
    Harvey, Nicholas J. A.
    Vondrak, Jan
    SIAM JOURNAL ON COMPUTING, 2020, 49 (02) : 394 - 428
  • [5] A Simple Algorithmic Proof of the Symmetric Lopsided Lovasz Local Lemma
    Kirousis, Lefteris
    Livieratos, John
    LEARNING AND INTELLIGENT OPTIMIZATION, LION 12, 2019, 11353 : 49 - 63
  • [6] An Algorithmic Proof of the Lovasz Local Lemma via Resampling Oracles
    Harvey, Nicholas J. A.
    Vondrak, Jan
    2015 IEEE 56TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2015, : 1327 - 1345
  • [7] Beyond the Lovasz Local Lemma: Point to Set Correlations and Their Algorithmic Applications
    Achlioptas, Dimitris
    Iliopoulos, Fotis
    Sinclair, Alistair
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 725 - 744
  • [8] Coloring nonunifoum hypergraphs: A new algorithmic approach to the general Lovasz local lemma
    Czumaj, A
    Scheideler, C
    RANDOM STRUCTURES & ALGORITHMS, 2000, 17 (3-4) : 213 - 237
  • [9] A Quantum Lovasz Local Lemma
    Ambainis, Andris
    Kempe, Julia
    Sattath, Or
    STOC 2010: PROCEEDINGS OF THE 2010 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2010, : 151 - 160
  • [10] Revisit the Lovasz Local Lemma
    Chen, J
    JOURNAL OF THEORETICAL PROBABILITY, 1997, 10 (03) : 747 - 758