Levy Laplacians and instantons on manifolds

被引:3
|
作者
Volkov, Boris O. [1 ]
机构
[1] Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
Levy Laplacian; Yang-Mills equations; instantons; infinite-dimensional manifold; YANG-MILLS FIELDS; RANDOM HOLONOMY;
D O I
10.1142/S0219025720500083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The equivalence of the anti-selfduality Yang-Mills equations on the four-dimensional orientable Riemannian manifold and the Laplace equations for some infinite-dimensional Laplacians is proved. A class of modified Levy Laplacians parameterized by the choice of a curve in the group SO(4) is introduced. It is shown that a connection is an instanton (a solution of the anti-selfduality Yang-Mills equations) if and only if the parallel transport generalized by this connection is a solution of the Laplace equations for some three modified Levy Laplacians from this class.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Levy Laplacians in Hida Calculus and Malliavin Calculus
    Volkov, B. O.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2018, 301 (01) : 11 - 24
  • [22] Instantons on special holonomy manifolds
    Ivanova, Tatiana A.
    Popov, Alexander D.
    PHYSICAL REVIEW D, 2012, 85 (10):
  • [23] Instantons on hyperkähler manifolds
    Chandrashekar Devchand
    Massimiliano Pontecorvo
    Andrea Spiro
    Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 : 533 - 561
  • [24] HIERARCHY OF LEVY-LAPLACIANS AND QUANTUM STOCHASTIC PROCESSES
    Volkov, Boris O.
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2013, 16 (04)
  • [25] Asymptotic behaviour of instantons on cylinder manifolds
    Teng Huang
    manuscripta mathematica, 2020, 162 : 171 - 189
  • [26] Instantons on cylindrical manifolds and stable bundles
    Owens, Brendan
    GEOMETRY & TOPOLOGY, 2001, 5 : 761 - 797
  • [27] Instantons, monopoles and toric hyperKahler manifolds
    Kraan, TC
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 212 (03) : 503 - 533
  • [28] Instantons on Sasakian 7-manifolds
    Portilla, Luis E.
    Sa Earp, Henrique N.
    QUARTERLY JOURNAL OF MATHEMATICS, 2023, 74 (03): : 1027 - 1083
  • [29] A class of generalized Levy Laplacians in infinite dimensional calculus
    Liu, K
    Chen, AY
    ISRAEL JOURNAL OF MATHEMATICS, 2001, 124 (1) : 157 - 176
  • [30] Representations of Levy Laplacians and related semigroups and harmonic functions
    Accardi, L
    Smolyanov, OG
    DOKLADY MATHEMATICS, 2002, 65 (03) : 356 - 362