机构:
Univ Massachusetts, Dept Math & Stat, 1 Sutton Court, Amherst, MA 01002 USAUniv Massachusetts, Dept Math & Stat, 1 Sutton Court, Amherst, MA 01002 USA
Foulis, David J.
[1
]
Pulmannov, Sylvia
论文数: 0引用数: 0
h-index: 0
机构:
Slovak Acad Sci, Math Inst, Stefanikova 49, SK-81473 Bratislava, SlovakiaUniv Massachusetts, Dept Math & Stat, 1 Sutton Court, Amherst, MA 01002 USA
Pulmannov, Sylvia
[2
]
机构:
[1] Univ Massachusetts, Dept Math & Stat, 1 Sutton Court, Amherst, MA 01002 USA
[2] Slovak Acad Sci, Math Inst, Stefanikova 49, SK-81473 Bratislava, Slovakia
Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Stormer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C-au-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW(au)-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.