Banach Synaptic Algebras

被引:4
|
作者
Foulis, David J. [1 ]
Pulmannov, Sylvia [2 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, 1 Sutton Court, Amherst, MA 01002 USA
[2] Slovak Acad Sci, Math Inst, Stefanikova 49, SK-81473 Bratislava, Slovakia
关键词
Synaptic algebra; Order-unit normed space; Jordan algebra; Convex effect algebra; Orthomodular lattice; JB-algebra; C*-algebra; JC-algebra; Rickart C*-algebra; Block; C-block; AW*-algebra; Baer property; GH-algebra; GENERALIZED HERMITIAN ALGEBRAS; PROJECTIONS; THEOREM;
D O I
10.1007/s10773-017-3641-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Stormer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C-au-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW(au)-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.
引用
收藏
页码:1103 / 1119
页数:17
相关论文
共 50 条